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ABSTRACT Cloud computing has emerged in recent years as one of the most interesting developments in
technology. With the gaining popularity of cloud-based solutions, more and more applications are migrating
into the Cloud and thus have highly demanding critical requirements for networking resources. Virtual
technology associated with a Data Center consists of a set of servers, storage and network devices, power
systems, cooling systems, etc., and makes it possible for the resource management of physical machines
to be more finely tuned and thus support multiple virtual machines well. The growing challenge, however,
is how to efficiently provision these resources to meet the requirements of the different qualities of service
levels. This paper offers and investigates a general situation wherein a datacenter can determine the cost of
using resources and a Cloud service user can decide whether it will pay the price for the resource or not for
an incoming task. By establishing a Continuous-Time Markov Decision Process model for both an average
reward model and a discounted expected reward model, the optimal policy of each model for admitting tasks
can be verified to be a State-related control limit (threshold) policy, respectively. Further, a detailed statement
and verification of the upper boundaries for such an optimal policy, and a comprehensive set of experiments
on the various cases to validate this proposed solution are provided. Particularly, themachine learningmethod
is implemented to obtain the optimal threshold values by using a feed-forward neural network model. Several
numerical examples are also provided on how to derive optimal threshold values. The results offered in this
paper can be easily utilized to help datacenter operate in an economically optimal way when providing
different needed application services to Cloud service users.

INDEX TERMS Cloud computing, continuous-time Markov decision process, datacenter, optimal control
policy, resource allocation, virtual machine.

I. INTRODUCTION
Cloud computing [1]–[6] has emerged in recent years as one
of themost interesting developments in technology. Given the
gaining popularity of cloud-based solutions, more and more
applications are now migrating into the Cloud. An increasing
number of these applications have highly demanding criti-
cal requirements for networking different resources. Indeed,
Cloud computing has emerged as a new computing paradigm
that enables ubiquitous, convenient, on-demand network
access to a large amount of remote, distributed, and shared
computing resources. As of today, a simple web search
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request may touch 1000+ servers, while a large computing
request can involve thousands of machines. In Cloud com-
puting, different kinds of computing resources are provided
to users as services and these users have access to computing
resources (e.g., networks, servers, storage, applications, and
services) from anywhere in the world based on their needs
where they are. Cloud computing has been known as software
as a service, infrastructure as a service, and platform as a
service. Cloud computing requires the underlying network
infrastructure to be fast, carry large amounts of traffic, and
be scalable.

Many existing cloud service platforms, such as Amazon
EC2 [7], the Google App Engine [8] andMicrosoft Azure [9],
have proven their success and been opened to the public as a
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FIGURE 1. Datacenters with virtual machines.

pay-as-you-go service. More and more enterprises and orga-
nization build their own Cloud computing infrastructures or
resort to using a hybrid cloud. Efficient resource management
not only enhances the quality of the service, but also reduces
the consumption of key resources. The growing challenge
is how to efficiently provision the resources to meet the
requirements of quality of service (QoS). Resource provision
is the most fundamental issue of Cloud computing service
deployment.

Virtual technology makes resource management of
physical machines (PMs) possible, and so they can be
more fine-grained by supporting multiple Virtual Machine
(VMs) [10]. Each VM can be equipped with different physi-
cal resources, e.g., CPU, memory, bandwidth, and disk stor-
age. Thus, the overall resource can be multiplexed to improve
the resource utilization. VMs can also be migrated if neces-
sary. The virtualized server cluster thus constitutes the data-
center (DC) [11]–[13] in different topology structures. This
paper proposes a cloud service model that follows the cloud
service framework of [14], where a virtual machine (VM)
is the minimal portion of the cloud resource that can be
allocated to a cloud service. When user sends a service
request to the cloud system, one or multiple VMs are ded-
icatedly assigned to this task. Furthermore, Liang et al. [15]
propose a SMDP [16] service decision making system for
interdomain service transfer to balance the computation loads
among multiple cloud domains when the holding cost of
multiple VMs is a linear function of the number of VMs,
and the Wang et al. [11] and Barroso et al. [17] investigate
the similar problems when the relationship of power cost
and energy efficiency over the number of VMs is nonlinear
function. Our research here targets on the problems when the
relationship of power cost and energy efficiency is a function
of the number of VMs. Figure 1 shows an example of a
datacenter with many Virtual Machines serving two types
of Cloud service tasks. Depending on the task requirement,
each type of task may involve different number of VMs. Here
type-1 task takes 3VMs and type-2 task needs 4VMs for their
services.

DC is a set of servers, storage and network devices, power
systems, cooling systems, etc. A DC can work alone, which
is suited for small scale applications. A large number of
distributed DCs in different geo-locations [18]–[20] can work

collaboratively as a whole entity for large-scale service appli-
cations, such as Online Businesses, Smart Grid, and scientific
computation. These DCs are connected using high-speed
Internet or dedicated high-bandwidth communication links.
Service can thus be provided by DCs that are closer to users.
This networking scheme is more scalable and also more
eligible for successful larger scale applications.

Some studies [21] indicates that the VM demands for
certain resources are highly bursty traffic, and thus can be
modelled as stochastic processes. In other words, the real
demands of these stochastic resources fluctuate, so it is dif-
ficult to obtain an accurate fixed-value measure. One such
example is network bandwidth. The bandwidth demands of
VMs in datacenters will be determined by the classes of
the tasks. This paper proposes a novel resource allocation
schemes in DCs for a CSP to maximize its expected average
reward or total discounted expected reward for serving Cloud
computing tasks from any initial state. The problem under
investigation in our research is for a general situation wherein
a datacenter can determine the cost of using resources and a
Cloud service user can decide whether it will pay the price
for the resource or not for an incoming task. We verified in
this paper that our proposed CTMDP method and model has
successfully reached our goals in finding the optimal policy.
Assuming that the arrival processes of tasks is a Poisson
process [22], their departure process follows negative expo-
nential distribution, and different application tasks require
different amounts of resources. The major contributions of
this paper are listed below:

1) A Continuous Time Markov Decision Process
(CTMDP) model for the DCs is established, respec-
tively, to gain the optimal policy of a DC on when to
admit or reject a task in order to achieve the maxi-
mum average reward and the total discounted expected
reward for any initial state. As far as we know, this is
the first time that the DCs as described in this paper
is modelled as a CTMDP model with several major
theoretic results obtained.

2) A detailed statement and verification of the optimal
control limit policy, as obtained in [23]–[26] for other
different models, for both the average model and the
discounted expected reward model is provided for mul-
timedia tasks requiring different amount of resources.
In [26], only the optimal objective function with dis-
counted model is studied. The major additional contri-
bution of the current research over the previous work
in [26]: (1) the consideration of average model includ-
ing the objective development, optimization analysis
and corresponding optimal threshold policy, (2) upper
bound analysis of the optimal threshold for both dis-
count model and average model; and (3) and machine
learning methods to derive the optimal thresholds,
threshold to value method to verify the theoretical
result, etc. for both discount model and average model.

3) A detailed statement and verification of a novel result
in the upper bound of the optimal policy, and a
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comprehensive set of experiments on various cases to
validate our proposed solution is justified both mathe-
matically and numerically.

4) CTMDP is in general a powerful tool in dealing with
stochastic dynamic problems. However, based on the
complexity of the problems, it is always a challenge to
suitably define the model and the related parameters to
be able to theoretically resolve the concerned problems
successfully. Even though in practice this method still
takes too much time through iteration methods to reach
the obtained optimal solution, which is particularly not
feasible in a constantly changing online environment.
Thus machine learning methods are proposed to derive
the optimal policy based on limited available data.
Our numerical results, as explained in the tables and
diagrams, are consistent with our theoretical results.

The remainder of this paper is organized as follows.
Section II discusses the modelling, Section III describes the
structure of the optimal policy, a control limit policy for
both the average model and the discounted expected reward
model, and includes the verification process for both models.
Section IV is devoted to a simulation using themachine learn-
ing method. Section V offers a numerical analysis with var-
ious tables and diagrams that validate the theoretical results.
Finally, Section VI offers concluding remarks.

II. MODEL FORMULATION
In this section we build the models on the datacenters. The
first part introduces the system model, and the second part
defines the CTMDP models based on the assumptions for the
system model.

A. THE SYSTEM MODEL
There are basically two parties in the Cloud computing
paradigm, the cloud service providers (CSPs) and the clients,
who act their own roles by providing and using the computing
resources. While enjoying the convenient on-demand access
to computing resources or services, the clients need to pay
for these accesses. CSPs can make a profit by providing
services and charging the clients for these services. Clients
can avoid the costs associated with ’inhouse’ provisioning
of computing resources and also have access to a larger
pool of computing resources than they could possibly own
by themselves. There are many different aspects, however,
to consider to evaluate the Cloud computing service qual-
ity, and these can be optimized using various optimization
methods [7], [11], [27]–[32].

The datacenter offers various features to help organize the
Cloud computing and includes the following advantages:

1) A datacenter permits the connection of thousands of
datacenter servers in an efficient way, so the Cloud
computing can expand its service easily.

2) The datacenter delivers traffic reliability and effi-
ciency to massive machine-to-machine communica-
tions wherein the activities from Cloud computing will

emerge as the workloads then distributed on the data-
center servers.

3) The datacenter supports various virtualization tech-
niques that help the DC to create a Virtual Machine
(VM), virtual network, and virtual function.

Note that in general, there are two types of applications in
the datacenter: (i) service applications and (ii) batch appli-
cations [17]. Service applications tend to generate many
requests with low processing needs whereas batch applica-
tions tend to small number of requests with large processing
needs. Unlike the batch applications that are throughput-
sensitive, service applications are typically response time-
sensitive. This paper considers a datacenter with both service
applications (type-1) and batch applications (type-2), each of
which will require resources in the datacenter for service. The
other basic assumptions for the DC are as follows:

1) The resources for a Cloud computing task can be
defined as a specific number of VMs designed to a
certain type of task. The total number of VMs defines
the capacity of resources from the DCs. There are a
total number of C VMs in the system.

2) There are two types of Tasks (T1 and T2) in the system,
and each needs a number of b1, b2 VMs for service. The
arriving time for tasks T1 and T2 are Poisson processes
with rates λ1 and λ2, respectively. The task processing
time for the tasks follows the negative exponential
distributions with rates µ1 and µ2, respectively.

3) When a task comes to the system and there are enough
free VMs, the CSP will decide whether to admit/reject
the task based on the current state of the system. How-
ever, if the system is full when a task is coming, which
means there is no free VM, the task will leave the
system.

4) Serving a type-1 (type-2) task would contribute R1(R2)
units of reward to the CSP. However, for each task,
the CSP needs to pay a price at rate f (b1, n1, b2, n2) to
manage the VMs (resources) in the DCs when there are
already n1 type-1 tasks and n2 type-2 tasks in service.
Here we consider bi, i = 1, 2 as constants.

B. THE CTMDP MODEL
First, let us introduce some basic concepts in general CTMDP
models. Each model has a state space, Action space, Transi-
tion Probabilities between states, reward functions and deci-
sion epochs. Also in the CTMDP models, a decision rule
prescribes a procedure for action selection in each state at
a specified decision epoch. Decision rules range in general
from deterministic Markovian to randomized History Depen-
dent, depending on how the rules incorporate past informa-
tion and how they select the actions. DeterministicMarkovian
decision rules specify the action choice when the system
occupies a state s at decision epoch t . A policy π specifies
the decision rule to be used at every decision epoch. It gives
the decision maker a prescription for action selection for any
possible future system state or history.
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TABLE 1. List of important notations.

1) OBJECTIVE FUNCTIONS
In this paper, denote by st for the state at time t , at for the
action to take at state st , and r(st , at ) for the reward obtained
when action at is selected at state st , we have two objectives
as follows:

1) The first objective is to find a policy πg that can bring
the maximum average expected reward gπ (s) for every
initial state s among all the possible polices.

gπ (s) = lim
N→∞

1
N
Eπs

{ N∑
t=0

r(st , at )
}
. (1)

2) For each policy π , let vπα (s) denote the total expected
infinite-horizon discounted reward with α as the dis-
count factor, given that the process occupies state s
at the first decision epoch. In this paper, our second
objective is to find an optimal policy πα that can bring
the maximum total expected discounted reward vπα (s)
for every initial state s.

vπα (s) = Eπs

{∫
∞

0
e−αtr(st , at )dt

}
. (2)

It is known that if decisions are made frequently, so that the
discount rate is very close to 1, or when performance criterion
cannot easily be described in economic terms, the decision
maker (CSP) may prefer to compare policies on the basis of
their average expected reward instead of their total discounted
reward. In this paper, both the average optimal policy and
discounted optimal policy are studied so that the CSP can
choose any optimal policy if needed. It is worth to point out,
from reference [33], that the average reward is the average
expected reward of current epochwhile the discounted reward
is for long-term accumulated reward. The decision variables
are the actions on either entering the system or leaving from
the system at each time epoch in this stochastic dynamic
programming problem.

2) MODEL CONSTRUCTION
We now introduce the CTMDP models as follows:

1) Let state space be S = {s : s = (n1, n2)}, where
integers n1 and n2 satisfy b1n1 + b2n2 ≤ C ; and
event space be E = {D1,D2,A1,A2}, where D1 and

D2 means a T1 and T2 departure from the system after
service, while A1 means an arrival of a T1 task, A2 is an
arrival of T2 task. Since the states migration not only
depends on the number of tasks in the system but also
depends on the happening departure and arrival events,
we will need to define a new state space as Ŝ = S ×E .
By doing so a state could be written as ŝ = 〈s, e〉 =
〈(n1, n2), e〉, where n1 and n2 are the numbers for T1
and T2 tasks, e stands for the event which will probably
happen on state (n1, n2), e ∈ {D1,D2,A1,A2}. Please
be noticed that the specification of the event in this
paper is one of major technical differences from that
in paper [25].

2) In states 〈(n1, n2),D1〉 and 〈(n1, n2),D2〉, if denote by
aC as the action to continue and by noting that b1n1 +
b2n2 ≤ C is a precondition in the state space, the action
space is then given by

A〈(n1,n2),D1〉 = {aC }, n1 > 0, n2 ≥ 0;

A〈(n1,n2),D2〉 = {aC }, n1 ≥ 0, n2 > 0.

Similarly, in states 〈(n1, n2),A1〉 and 〈(n1, n2),A2〉,
if denote by aR as the action to reject the request and
aA as the action to admit, the action space will be

A〈(n1,n2),A1〉 = {aR, aA}, n1 ≥ 0, n2 ≥ 0;

A〈(n1,n2),A2〉 = {aR, aA}, n1 ≥ 0, n2 ≥ 0.

3) The decision epochs are those time points when a call
arriving or leaving the system. Based on our assump-
tion, it is not too hard to know that the distribution of
time between two epochs is

F(t|ŝ, a) = 1− e−β(ŝ,a)t , t ≥ 0,

where for each state ŝ = 〈((n1, n2)), b〉 and action a,
β0(s) = λ1 + λ2 + n1µ1 + n2µ2, since a departure
event only happens when there is a task in the system,
the β(ŝ, a) will be represented as



β0(s)− µ1, b = D1, a = aC , n1 > 0,
β0(s)− µ2, b = D2, a = aC , n2 > 0,
β0(s)+ µ1, b = A1, a = aA, n1 ≥ 0, n2 ≥ 0,

b1n1 + b2n2 ≤ C − b1,
β0(s)+ µ2, b = A2, a = aA, n1 ≥ 0, n2 ≥ 0,

b1n1 + b2n2 ≤ C − b2,
β0(s), b = {A1,A2}, a = aR, n1 ≥ 0, n2 ≥ 0.

4) Let q(j|ŝ, a) denote the probability that the system
occupies state j in the next epoch, if at the current
epoch the system is at state ŝ and the decision maker
takes action a ∈ Aŝ. For the cases of departure events,
e.g. for a departure event of D1 under the condition
of (n1 > 0, n2 ≥ 0), (ŝ, a) = (〈(n1, n2),D1〉, aC ),
if denote by sn = (n1−1, n2), thenwewill have q(j|ŝ, a)

158098 VOLUME 7, 2019
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as
λ1/β0(sn), j = 〈(n1 − 1, n2),A1〉,
λ2/β0(sn), j = 〈(n1 − 1, n2),A2〉,
(n1 − 1)µ1/β0(sn), j = 〈(n1 − 1, n2),D1〉,

n2µ2/β0(sn), j = 〈(n1 − 1, n2),D2〉.

Similar equations can be derived for cases like
(ŝ, a) = (〈(n1, n2),D2〉, aC ). For the cases of
arrival events, (ŝ, a) = (〈(n1, n2),A1〉, aA), (ŝ, a) =
(〈(n1, n2),A2〉, aA), since admitting an incoming call
migrates the system state immediately (adding one user
or not), we will get q(j|ŝ, a) as

q(j|〈(n1 + 2, n2),D1〉, aC ), b = A1, a = aA,
q(j|〈(n1 + 1, n2),D1〉, aC ), b = A1, a = aR,
q(j|〈(n1, n2 + 2),D2〉, aC ), b = A2, a = aA,
q(j|〈(n1, n2 + 1),D2〉, aC ), b = A2, a = aR.

5) Because the system state does not change between
decision epochs, from our assumptions, the expected
average reward between epochs satisfies

r(ŝ, a) = k(ŝ, a)+ c(ŝ, a)Eaŝ {τ1}

= k(ŝ, a)+
c(ŝ, a)
β(ŝ, a)

.

Also from Chp 11.5.2 [33] and our assumptions,
the expected discounted reward between epochs satis-
fies

r(ŝ, a) = k(ŝ, a)+ c(ŝ, a)Eaŝ

{∫ τ1

0
e−αtdt

}
= k(ŝ, a)+ c(ŝ, a)Eaŝ

{
[1− e−ατ1 ]/α

}
= k(ŝ, a)+

c(ŝ, a)
α + β(ŝ, a)

,

where

k(ŝ, a) =


0, b = {D1,D2}, a = aC ,
0, b = {A1,A2}, a = aR,
R1, b = A1, a = aA,
R2, b = A2, a = aA.

Here, since wewill getR1(R2) unites of reward after the
service of a T1(T2) task, we can treat this as that we get
the reward at the time of accepting the task, thusmaking
the problem to be an admission control problem. Also,
we have the cost function c(ŝ, a) as

−f (b1, n1 − 1, b2, n2), b = D1, a = aC , n1 > 0,
−f (b1, n1, b2, n2 − 1), b = D2, a = aC , n2 > 0,
−f (b1, n1 + 1, b2, n2), b = A1, a = aA,

b1n1 + b2n2 ≤ C − b1,
−f (b1, n1, b2, n2 + 1), b = A2, a = aA,

b1n1 + b2n2 ≤ C − b2,
−f (b1, n1, b2, n2), b = {A1,A2}, a = aR.

In the next section we will prove that there exists a
state-related threshold for accepting the tasks if the cost
function has some special properties.

III. OPTIMAL POLICY
A policy is stationary if, for each decision epoch t , decision
rule at t epoch dt = d is the same, which can be denoted
by d∞. In our CTMDP model, an average optimal policy
πg means that it is with optimal average expected reward
gπ (ŝ) for every initial state ŝ. Similarly, an discounted optimal
policy πα means that it can bring the maximum total expected
discounted reward vπα (ŝ) for every initial state ŝ.
In our CTMDP model, since both the state space Ŝ and the

action space A are finite, the reward functions r(ŝ, a) for both
average optimal policy and discounted optimal plicy are also
finite, then from Theorem 8.4.5 and Theorem 11.3.2 of [33],
both the average optimal policy and discounted optimal pol-
icy are stationary deterministic policy d∞, so our problem
can be reduced to find the deterministic decision rules d of
the optimal policies.

A. THRESHOLD POLICY
For our admission problem, a policy is called a control
limit (threshold) policy for a given number of Tasks n1 and
n2 in the system, say for T1 task, is there existing a constant
or threshold D(n2) ≥ 0 such that the system will accept
the arriving T1 whenever the number of T1 currently in the
system is less than D(n2), that means the decision rule for T1
is:

d(n1, n2) =

{
Admit, n1 ≤ D(n2), n2 ≥ 0,
Reject, n1 > D(n2), n2 ≥ 0.

(3)

Similar definitions can be found with T2 tasks. It is observed
that a control limit policy is a stationary deterministic policy.

B. RATE UNIFORMIZATION
Based on the assumptions, our process fits the condition of
Assumption 11.5.1 of [33], which is [1− q(ŝ|ŝ, a)]β(ŝ, a) ≤
c,∀ŝ ∈ Ŝ, a ∈ A, here c is a constant. So, we can define
a uniformization of our process with components denoted
by ∼. For each deterministic decision rule d , let qd (j|ŝ) =
q(j|ŝ, d(ŝ)), rd (ŝ) = r(ŝ, d(ŝ)) and βd (ŝ) = β(ŝ, d(ŝ)), c =
λ1 + λ2 + C ∗max(µ1, µ2), from Chp 11.5.2 [33], we have

q̃(j|ŝ, a) =


1−

[1− q(ŝ|ŝ, a)]β(ŝ, a)
c

, j = s,

q(j|ŝ, a)β(ŝ, a)
c

, j 6= ŝ.

From Theorem 8.4.5 of [33], with a stationary deterministic
policy d∞, the expected average reward (gain) per time unit
is a constant function that is g(s) = g, where g is a scalar.
Also, from Chp 11.5.3 [33], the equation can be written in
component notation as

hd
∞

(ŝ) = rd (ŝ)−
g

β(s, a)
+

∑
j∈Ŝ

qd (j|ŝ)hd
∞

(j). (4)
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Here h(s) is the bias function for each state s, which is
interpreted as if starting from state s, the expected total differ-
ence between the reward and the average reward (stationary
reward).

Furthermore, for the reward functions of average policies,
we have r̃(ŝ, a) ≡ r(ŝ, a)β(ŝ,a)c .

Then for each d∞ policy and ŝ ∈ Ŝ, we have

h̃d
∞

(ŝ) = r̃d (ŝ)− g̃+
∑
j∈Ŝ

qd (j|ŝ)h̃d
∞

(j). (5)

Since g denotes the optimal average reward per time unit and
the expected time between transitions is 1

c , then g̃ = g/c can
be interpreted as the optimal average reward per transition.
Also, we have

h̃d
∞

(ŝ) = hd
∞

(ŝ). (6)

From equation (4) and (5) , the optimality equation of h(ŝ)
would have the form of

h(ŝ) = max
a∈Aŝ

r̃(ŝ, a)− g̃+∑
j∈Ŝ

q̃(j|ŝ, a)h(j)

 . (7)

Similarly for discounted polices, from Chp 11.5.2 [33],
we have

vd
∞

α (ŝ) = rd (ŝ)+
βd (ŝ)

α + βd (ŝ)

∑
j∈Ŝ

qd (j|ŝ)vd
∞

α (j). (8)

For the reward functions, we have r̃(ŝ, a) ≡ r(ŝ, a)α+β(ŝ,a)
α+c .

From Proposition 11.5.1 [33], for each d∞ policy and ŝ ∈ Ŝ,
we have

ṽd
∞

α (ŝ) = vd
∞

α (ŝ). (9)

From equation (8), the optimal equation of v(ŝ) for maxi-
mum vπα (ŝ) would have the form of

v(ŝ) = max
a∈Aŝ

r̃(ŝ, a)+ λ∑
j∈Ŝ

q̃(j|ŝ, a)v(j)

 , (10)

where λ ≡ c
c+α .

C. AVERAGE MODEL
From equation (7) we get

h(〈(n1 + 1, n2),D1〉)

=
1
c
[−f (b1, n1, b2, n2)− g

+λ1 h(〈(n1, n2),A1〉)+ λ2 h(〈(n1, n2),A2〉)

+n1µ1 h(〈(n1, n2),D1〉)+ n2µ2 h(〈(n1, n2),D2〉)

+(c− β0(s))h(〈(n1 + 1, n2),D1〉)].

This means that if we define a new cost function
fh(b1, n1, b2, n2) = f (b1, n1, b2, n2)+ g, we have

h(〈(n1 + 1, n2),D1〉)

=
1

β0(n1, n2)
[−fh(b1, n1, b2, n2)

+λ1h(〈(n1, n2),A1〉)+ λ2h(〈(n1, n2),A2〉)

+n1µ1h(〈(n1, n2),D1〉)

+n2µ2h(〈(n1, n2),D2〉)]. (11)

Similarly, it is easily found that

h(〈(n1 + 1, n2),D1〉) = h(〈(n1, n2 + 1),D2〉),

which shows the equality between different departure events,
similar results can also be seen among arrival events or even
between departure and arrival events. This leads us to define
a new function B(s), s = (n1, n2), n1 ≥ 0, n2 ≥ 0 which is

B(s) = h(〈(n1 + 1, n2),D1〉) = h(〈(n1, n2 + 1),D2〉).

It is noticed that X (n1, n2), or sometime using X (s) only for
a short expression, is only related to the state, but not with
the happening event, which can greatly simplify the proof
process.

Similar as above results for a departure event, we can
consider an arrive event and will get the following results:

h(〈(n1, n2),A1〉, aA)

= R1
β0(n1 + 1, n2)

c
+

1
c

[
− fh(b1, n1 + 1, b2, n2)

+λ1h(〈(n1 + 1, n2),A1〉)+ λ2h(〈(n1 + 1, n2),A2〉)

+(n1 + 1)µ1h(〈(n1 + 1, n2),D1〉)

+n2µ2h(〈(n1 + 1, n2),D2〉)

+(c− β0(n1 + 1, n2))h(〈(n1, n2),A1〉)
]
, (12)

and

h(〈(n1, n2),A1〉, aR)

=
1
c

[
− fh(b1, n1, b2, n2)+ λ1h(〈(n1, n2),A1〉)

+λ2h(〈(n1, n2),A2〉)

+n1µ1h(〈(n1, n2),D1〉)+ n2µ2h(〈(n1, n2),D2〉)

+(c− β0(n1, n2))h(〈(n1, n2),A1〉)
]
. (13)

Similarly, we will have

h(〈(n1, n2),A2〉, aA)

= R2
β0(n1, n2 + 1)

c
+

1
c

[
− fh(b1, n1, b2, n2 + 1)

+λ1h(〈(n1, n2 + 1),A2〉)+ λ2h(〈(n1, n2 + 1),A2〉)

+n1µ1h(〈(n1, n2 + 1),D1〉)

+(n2 + 1)µ2h(〈(n1, n2 + 1),D2〉)

+(c− β0(n1, n2 + 1))h(〈(n1, n2),A2〉)
]
, (14)

and

h(〈(n1, n2),A2〉, aR)

=
1
c

[
− fh(b1, n1, b2, n2)+ λ1h(〈(n1, n2),A1〉)

+λ2h(〈(n1, n2),A2〉)

+n1µ1h(〈(n1, n2),D1〉)+ n2µ2h(〈(n1, n2),D2〉)

+(c− β0(n1, n2))h(〈(n1, n2),A2〉)
]
. (15)
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Since admitting a call migrates the system state immediately,
we get

h(〈(n1, n2),A1〉, aA) ≥ R1 + B((n1 + 1, n2)),

h(〈(n1, n2),A1〉, aR) ≥ B((n1, n2)),

h(〈(n1, n2),A2〉, aA) ≥ R2 + B((n1, n2 + 1)),

h(〈(n1, n2),A2〉, aR) ≥ B((n1, n2)).

And furthermore, the above inequalities will be the equality
when the corresponding action aA (whenever an A1 arrives),
aR (whenever an A1 arrives), aA (whenever an A2 arrives) and
aR (whenever an A2 arrives), is the best action, respectively.
This also includes the situation when b1n1 + b2n2 = C ,
the action aR is the the best action for any arrival of A1
and A2.
From these analysis, it is not too hard to verify that

h(〈(n1, n2),A1〉)

= max
[
B((n1, n2)),R1 + B((n1 + 1, n2))

]
, (16)

h(〈(n1, n2),A2〉)

= max
[
B((n1, n2)),R2 + B((n1, n2 + 1))

]
. (17)

Before proceeding to our major theory of optimal strat-
egy, we will need to introduce the following two lemmas
first.
Lemma 1: If h(〈(n1, n2),A1〉), h(〈(n1, n2),A2〉) and

fh(b1, n1, b2, n2) are all concave functions for n1 and n2
respectively, then B((n1, n2)) is also concave function for n1
and n2 respectively.

Proof: By using equation (11) and the notation of
B((n1, n2)), we will have

B((n1, n2))

=
1

β0(n1, n2)
[−fh(b1, n1, b2, n2)+ λ1h(〈(n1, n2),A1〉)

+λ2h(〈(n1, n2),A2〉)

+n1µ1B((n1 − 1, n2))+ n2µ2B((n1, n2 − 1))]. (18)

For any function g(n1, n2) (n1 ≥ 0, n2 ≥ 0), if denote by

1n1g(n1, n2) = g(n1 + 1, n2)− g(n1, n2),

1n2g(n1, n2) = g(n1, n2 + 1)− g(n1, n2),

we will have the results by a mathematical implementation
on above equation (18) as follows:

β0(n1 + 1, n2)
[
B(n1 + 1, n2)− B(n1, n2)

]
= fh(b1, n1, b2, n2)− fh(b1, n1 + 1, b2, n2)

+λ1

[
h(〈(n1 + 1, n2),A1〉)− h(〈(n1, n2),A1〉)

]
+λ2

[
h(〈(n1 + 1, n2),A2〉)− h(〈(n1, n2),A2〉)

]
+n1µ1

[
B(n1, n2)− B(n1 − 1, n2)

]
+n2µ2

[
B(n1 + 1, n2 − 1)− B(n1, n2 − 1)

]
, (19)

and

β0(n1 + 2, n2)
[
1Bn1 (n1 + 1, n2)−1Bn1 (n1, n2))

]
= 1n1 fh(b1, n1, b2, n2)−1n1 fh(b1, n1 + 1, b2, n2)

+λ1
[
1n1h(〈(n1 + 1, n2),A1〉)−1n1h(〈(n1, n2),A1〉)

]
+λ2

[
1n1h(〈(n1 + 1, n2),A2〉)−1n1h(〈(n1, n2),A2〉)

]
+n1µ1

[
1n1B(n1, n2)−1n1B(n1 − 1, n2)

]
+n2µ2

[
1n1B(n1, n2−1)−1n1B(n1 − 1, n2−1)

]
. (20)

From these equation, by using a combined mathematical
induction method and iteration method, we can verify that
the left side of equation (19) and (20) are all non-positive,
that means for any n1 and n2,

B(n1 + 1, n2)− B(n1, n2) ≤ 0,

and

1Bn1 (n1 + 1, n2)−1Bn1 (n1, n2)) ≤ 0.

Thus B(n1, n2) is a non-increasing function on n1 from
above first inequality and is a concave function on n1 from
above second inequality. Similarly,B(n1, n2) is also a concave
and non-increasing function on n2.
Another important result to be used in our major theory

of both average and discounted optimal strategies is given as
follow:
Lemma 2 [25]: If an integer function p(i) (i ≥ 0) is

concave, then for any constant R ≥ 0, the function

q(i) ≡ max{p(i),R+ p(i+ 1)} ,

is also concave on i ≥ 0.
For the cost function f (b1, n1, b2, n2) (n1 ≥ 0, n2 ≥ 0),

if denote by

1n1 f (b1, n1, b2, n2) = f (b1, n1 + 1, b2, n2)

−f (b1, n1, b2, n2),

1n2 f (b1, n1, b2, n2) = f (b1, n1, b2, n2 + 1)

−f (b1, n1, b2, n2),

then from the equations (27) and (28), we can obtain the
following theorem.
Theorem 1: If f (b1, n1, b2, n2) is convex and increasing for

nonnegative integers n1 and n2, respectively, and

1n1 f (b1, n1, b2, n2) ≥ 0, and 1n2 f (b1, n1, b2, n2) ≥ 0,

the optimal policy for the average model is a control limit
policy.
Proof: It is straightforward to note that

1n1 fh(b1, n1, b2, n2) = 1n1 f (b1, n1, b2, n2),

1n2 fh(b1, n1, b2, n2) = 1n2 f (b1, n1, b2, n2).

Under the given condition, we use Value Iteration Method
to show that for all statesB(n1, n2) is concave and nonincreas-
ing for nonnegative integers n1 and n2, respectively.
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1) Set B0(n1, n2) = 0, and substitute this into equa-
tion (21), we will have

B1(n1, n2) = −
fh(b1, n1, b2, n2)

c
, n1 ≥ 0, n2 ≥ 0.

By concavity and monotony of fh(b1, n1, b2, n2),
B1(n1, n2) is therefore concave nonincreasing for n1
and n2, respectively.

2) By using equation (16) and (17) as well as the
result in Lemma 2, we know that h1(〈n1, n2,A1〉) and
h1(〈n1, n2,A2〉) are all concave and non-increasing
functions.

3) Set n=n+1, by noting the result in Lemma 1, and by
using equation (16) and (17) as well as the result in
Lemma 2 again, we can finally verify Bn+1(n1, n2) is
also concave nonincreasing for n1 and n2, respectively

4) As the iteration continues, with n goes to∞, B(n1, n2)
is always concave nonincreasing for n1 and n2,
respectively.

Finally, by noting the Theorem 8.4.4 and Theorem 8.4.5
of [33] that the optimality equation has the unique solution,
we know the value iteration Bn(n1, n2) will uniquely con-
verges to a concave and nonincreasing. Furthermore, by using
equation (16) and (17), as well as the concavity property of
h(〈(n1, n2),Ai〉), it is straight forward to know that the optimal
policy must be a control limit policy as stated in the Theory.

D. DISCOUNTED MODEL
From equation (10) we get

v(〈(n1 + 1, n2),D1〉)

=
1

α + c
[−f (b1, n1, b2, n2)

+λ1v(〈(n1, n2),A1〉)+ λ2v(〈(n1, n2),A2〉)

+n1µ1v(〈(n1, n2),D1〉)+ n2µ2v(〈(n1, n2),D2〉)

+(c− β0(s))v(〈(n1 + 1, n2),D1〉)]. (21)

This means that

v(〈(n1 + 1, n2),D1〉)

=
1

α + β0(n1, n2)
[−f (b1, n1, b2, n2)

+λ1v(〈(n1, n2),A1〉)+ λ2v(〈(n1, n2),A2〉)

+n1µ1v(〈(n1, n2),D1〉)

+n2µ2v(〈(n1, n2),D2〉)]. (22)

Similarly, it is easily found that

v(〈(n1 + 1, n2),D1〉) = v(〈(n1, n2 + 1),D2〉),

which shows the equality between different departure
events. This leads us to define a new function X (s), s =
(n1, n2), n1 ≥ 0, n2 ≥ 0 which is

X (n1, n2) = v(〈(n1 + 1, n2),D1〉) = v(〈(n1, n2 + 1),D2〉).

It is noticed that X (n1, n2), or sometime using X (s) only for
a short expression, is only related to the state, but not with

the happening event, which can greatly simplify the proof
process.
Similar as above results for a departure event, we can

consider an arrive event and will get the following results:

v(〈(n1, n2),A1〉, aA)

= R1
α + β0(n1 + 1, n2)

α + c

+
1

α + c

[
− f (b1, n1 + 1, b2, n2)

+λ1v(〈(n1 + 1, n2),A1〉)+ λ2v(〈(n1 + 1, n2),A2〉)

+(n1 + 1)µ1v(〈(n1 + 1, n2),D1〉)

+n2µ2v(〈(n1 + 1, n2),D2〉)

+(c− β0(n1 + 1, n2))v(〈(n1, n2),A1〉)
]
, (23)

and

v(〈(n1, n2),A1〉, aR)

=
1

α + c

[
− f (b1, n1, b2, n2)+ λ1v(〈(n1, n2),A1〉)

+λ2v(〈(n1, n2),A2〉)

+n1µ1v(〈(n1, n2),D1〉)+ n2µ2v(〈(n1, n2),D2〉)

+(c− β0(n1, n2))v(〈(n1, n2),A1〉)
]
. (24)

Similarly, we will have

v(〈(n1, n2),A2〉, aA)

= R2
α + β0(n1, n2 + 1)

α + c

+
1

α + c

[
− f (b1, n1, b2, n2 + 1)

+λ1v(〈(n1, n2 + 1),A2〉)+ λ2v(〈(n1, n2 + 1),A2〉)

+n1µ1v(〈(n1, n2 + 1),D1〉)

+(n2 + 1)µ2v(〈(n1, n2 + 1),D2〉)

+(c− β0(n1, n2 + 1))v(〈(n1, n2),A2〉)
]
, (25)

and

v(〈(n1, n2),A2〉, aR)

=
1

α + c

[
− f (b1, n1, b2, n2)+ λ1v(〈(n1, n2),A1〉)

+λ2v(〈(n1, n2),A2〉)

+n1µ1v(〈(n1, n2),D1〉)+ n2µ2v(〈(n1, n2),D2〉)

+(c− β0(n1, n2))v(〈(n1, n2),A2〉)
]
. (26)

From above equations, we can easily get

v(〈(n1, n2),A1〉, aA) ≥ R1 + X ((n1 + 1, n2)),

v(〈(n1, n2),A1〉, aR) ≥ X ((n1, n2)),

v(〈(n1, n2),A2〉, aA) ≥ R2 + X ((n1, n2 + 1)),

v(〈(n1, n2),A2〉, aR) ≥ X ((n1, n2)).

In fact, the above inequalities will be the equalities when the
corresponding action aA (whenever an A1 arrives), aR (when-
ever an A1 arrives), aA (whenever an A2 arrives) and aR
(whenever an A2 arrives), is the best action, respectively.
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This also includes the situation when n1+n2 = C , the action
aR is the the best action for any arrival of A1 and A2.
From these analysis, it is not too hard to verify that

v(〈(n1, n2),A1〉)

= max
[
X ((n1, n2)),R1 + X ((n1 + 1, n2))

]
, (27)

v(〈(n1, n2),A2〉)

= max
[
X ((n1, n2)),R2 + X ((n1, n2 + 1))

]
. (28)

Before proceeding to our major theory of optimal strategy,
we will need to introduce the following two lemmas first.
Lemma 3: If v(〈(n1, n2),A1〉), v(〈(n1, n2),A2〉) and

f (b1, n1, b2, n2) are all concave functions for n1 and n2
respectively, then X ((n1, n2)) is also concave function for n1
and n2 respectively.

Proof: By using equation (22) and the notation of
X ((n1, n2)), we will have

X ((n1, n2))

=
1

α + β0(n1, n2)
[−f (b1, n1, b2, n2)

+λ1v(〈(n1, n2),A1〉)

+λ2v(〈(n1, n2),A2〉)+ n1µ1X ((n1 − 1, n2))

+n2µ2X ((n1, n2 − 1))]. (29)

we will obtain the following results by a mathematical imple-
mentation on above equation (29):

(
α + β0(n1 + 1, n2)

)[
X (n1 + 1, n2)− X (n1, n2)

]
= f (b1, n1, b2, n2)− f (b1, n1 + 1, b2, n2)

+λ1

[
v(〈(n1 + 1, n2),A1〉)− v(〈(n1, n2),A1〉)

]
+λ2

[
v(〈(n1 + 1, n2),A2〉)− v(〈(n1, n2),A2〉)

]
+n1µ1

[
X (n1, n2)− X (n1 − 1, n2)

]
+n2µ2

[
X (n1 + 1, n2 − 1)− X (n1, n2 − 1)

]
, (30)

and

(α + β0(n1 + 2, n2))
[
1n1X (n1 + 1, n2)−1n1X (n1, n2))

]
= 1n1 f (n1, n2)−1n1 f (n1 + 1, n2)

+λ1
[
1n1v(〈(n1 + 1, n2),A1〉)−1n1v(〈(n1, n2),A1〉)

]
+λ2

[
1n1v(〈(n1 + 1, n2),A2〉)−1n1v(〈(n1, n2),A2〉)

]
+n1µ1

[
1n1X (n1, n2)−1n1X (n1 − 1, n2)

]
+n2µ2

[
1n1X (n1, n2−1)−1n1X (n1−1, n2 − 1)

]
. (31)

From these equation, by using a combined mathematical
induction method and iteration method, we can verify that
the left side of equation (30) and (31) are all non-positive,
that means for any n1 and n2,

X (n1 + 1, n2)− X (n1, n2) ≤ 0,

and

1Xn1 (n1 + 1, n2)−1Xn1 (n1, n2)) ≤ 0.

Thus X (n1, n2) is a non-increasing function on n1 from
above first inequality and is a concave function on n1 from
above second inequality. Similarly, X (n1, n2) is also a con-
cave and non-increasing function on n2.

Another important result to be used in our major theory of
optimal strategy is given as follow:

Based on above Lemma and by a similar method as in the
proof of Theorem 1, we can prove the following major result:
Theorem 2: If f (b1, n1, b2, n2) is convex and increasing for

nonnegative integers n1 and n2, respectively, then the optimal
policy for the discounted model is also a control limit policy,
i.e., for any state (n1, n2) in which n1 + n2 ≤ C , there must
exist two integers, say N1 and N2, such that decision

a〈(n1,n2),A1〉 =

{
aA, if n1 ≤ N1;

aR, if n1 > N1.
(32)

and

a〈(n1,n2),A2〉 =

{
aA, if n2 ≤ N2;

aR, if n2 > N2.
(33)

E. UPPER BOUND ANALYSIS
From the above analysis we have known that both the average
optimal policy and discounted optimal policy is a control
limit policy if the cost function f (b1, n1, b2, n2) is convex and
increasing for nonnegative integers n1 and n2, respectively.
How to determine the corresponding threshold value of the
control limit policy is a challenging issue. However, under
some conditions, we can identify the upper bound easily as
follows:
Theorem 3: In the average model, for any non-negative

integer n2, if there exists an integer n such that b1n+b2n2 ≤ C
and

1n1 fh(b1, n, b2, n2)
β0(n+ 1, n2)

> R1, (34)

then an upper bound of the threshold value when any task-1
arrives at the system is determined by

N ∗1 = min
{
n :

1n1 fh(b1, n, b2, n2)
β0(n+ 1, n2)

> R1

}
,

that means the optimal threshold value N1 ≤ N ∗1 . Similarly,
for any non-negative integer n1, if there exists an integer n
such that b1n1 + b2n ≤ C and

1n2 fh(b1, n1, b2, n)
β0(n1, n+ 1)

> R2, (35)

then an upper bound of the threshold value when any task-2
arrives at the system is determined by

N ∗2 = min
{
n :

1n2 fh(b1, n1, b2, n)
β0(n1, n+ 1)

> R2

}
,

that means the optimal threshold value N2 ≤ N ∗2 .
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Proof: By noticing the non-increasing property of
the concave functions h(〈n1, n2,A1〉), h(〈n1, n2,A2〉) and
B(n1, n2), we will have h(〈n1+ 1, n2,A1〉) < h(〈n1, n2,A1〉),
h(〈n1 + 1, n2,A2〉) < h(〈n1, n2,A2〉), B(n1, n2) < B(n1 −
1, n2) and B(n1 + 1, n2 − 1) < B(n1, n2 − 1). If furthermore,

1
β0(n1 + 1, n2)

1n1 fh(b1, n1, b2, n2) > R1, (36)

holds from the given condition, from equation (19), we know

R1 + B(〈n1 + 1, n2〉) < B(〈n1, n2〉).

According to equation (16), the above inequality means that
the system will take a reject action for incoming A1 arrivals.
Thus, the n in the condition is an upper bound and therefore
the first result is verified. The result for the upper bound of
task-2 can be derived similarly.

Similarly, we can obtain the upper result for the discounted
model and only list the result as follows:
Theorem 4: In the discounted model, for any non-negative

integer n2, if there exists an integer n such that b1n+b2n2 ≤ C
and

1n1 f (b1, n, b2, n2)
α + β0(n+ 1, n2)

> R1, (37)

then an upper bound of the threshold value when any task-1
arrives at the system is determined by

N ∗1 = min
{
n :

1n1 f (b1, n, b2, n2)
α + β0(n+ 1, n2)

> R1

}
,

that means the optimal threshold value N1 ≤ N ∗1 . Similarly,
for any non-negative integer n1, if there exists an integer n
such that b1n1 + b2n ≤ C and

1n2 f (b1, n1, b2, n)
α + β0(n1, n+ 1)

> R2, (38)

then an upper bound of the threshold value when any task-2
arrives at the system is determined by

N ∗2 = min
{
n :

1n2 f (b1, n1, b2, n)
α + β0(n1, n+ 1)

> R2

}
,

that means the optimal threshold value N2 ≤ N ∗2 .

IV. SIMULATION WITH MACHINE LEARNING
We have theoretically verified that the optimal policy to
maximizing the expected discounted reward in equation (2)
is a control limit policy or a threshold policy for accepting
task-1 and task-2 arrivals. However, it is always a challenging
problem in exactly finding this threshold value or optimal
objective value for a given problem, especially in a continu-
ously changing environment, such as the changes of arrival
rates, service rates, rewards in the real world. While we
have demonstrated in above subsection on how to derive the
thresholds by using value iteration method, the calculation
through this way is always a time-consuming issue.

In this subsection, we propose the machine learning
method and then demonstrate it to obtain or estimate the
threshold value and the optimal objective value by using a

FIGURE 2. Neural network model created with Matlab.

TABLE 2. Parameter value setting.

TABLE 3. Training dataset for neural network model.

feed-forward neural network model. A feed-forward neural
network is an artificial neural network where connections
between the units do not form a cycle. Figure 2 shows the
structure of the neural network model.

Our CTMDP model consists of several parameters like
arrival rates, departure rates, rewards and cost function, etc.
Here for simulation and numerical analysis purpose we set
some parameters as those listed in Table 2. It can be seen from
the Table 2 that the loads for T1 and T2 tasks are ρ1 =

λ1
µ1
=

0.4 and ρ2 =
λ2
µ2
= 0.5, which means the system are medium

loaded, and the rewards for T2 is a little higher than the T1
task. The total capacity of the system is set to be 40.

Based on these development, we can build the training
data sets in Table 3, here reward R1 and R2 is chosen from
0.2, 0.4, 0.6, 0.8, 1, and the cost function f (b1, n1, b2, n2)
is with the format as

f (b1, n1, b2, n2) = a(n1 + n2)+ 0.001b1 + 0.002b2

Here a is some constants ≥ 0, the terms 0.001b1 + 0.002b2
stands for setup cost of binding and releasing b1 and b2 VMs.
In Table 3 a is chosen from 0.1, 0.5, 1, 2, while keeping all
the other parameters unchanged.

The combination of these parameters will give us 5 ∗
5 ∗ 4 = 100 training data inputs totally. More specifically,
as shown in Figure 2, this is a two-layer neural network with
50 hidden neurons. The inputs are the set of parameters in our
CTMDP model, such as reward, cost function, arrival rates,
departure rates, etc which makes the total input parameters
be 68 (including all the values in the cost function); output
are the B(n1, n2) values for each state, in this case there are
11∗5 = 55 outputs, but since b1n1+b2n2 ≤ C , the effective
outputs is only 29, which is reflected in Figure 2.
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FIGURE 3. Neural network model performance plot.

FIGURE 4. Neural network model regression plot.

After the model is trained, we can test the model with some
other parameter settings which can be different from those in
the initial training dataset. As seen from the performance and
regression plot from the Neural Networkmodel, it is observed
that the machine learning model can do a good estimation of
the B(n1, n2) values.
First we test the parameter set with R1 = 0.2, R2 =

0.3 and cost function a = 1, which is not in the training
dataset since R2 = 0.3. It is seen that the values gener-
ated from Neural Network model (shown in Table 4) quite
fits the values in Table 5, with their differences shown in
Table 6.

Next we test the parameter set with R1 = 0.3, R2 = 0.3
and a = 1, while keeping all the other parameters unchanged.
As seen from Table 7 and 8, the values from Neural Network
model also fits with the real values from value iteration
method. Their differences are listed in Table 9.

V. NUMERICAL ANALYSIS
In the last section, we have observed that we can get a good
estimation ofB(n1, n2) values by usingmachine learning with
Neural Network method for average optimal policies. Here
we will do the numerical analysis with the same parameter
setting as those in the last section, both with average models
and discounted models.

TABLE 4. B(n1,n2) values from neural network model at R1 = 0.2 and
R2 = 0.3.

TABLE 5. B(n1,n2) values with R1 = 0.2 and R2 = 0.3.

TABLE 6. Differences from Table 4 and Table 5.

A. MODEL PERFORMANCE
First, we choose a = 1, the cost function becomes

f1(b1, n1, b2, n2) = (n1 + n2)+ 0.001b1 + 0.002b2.

With R1 = 0.2 and R2 = 0.3, the values of bias function
B(n1, n2) are listed at Table 5, ‘‘0’’ values means there are no
such state in the system. It is seen that B(n1, n2) values are
concave decreasing on both n1 and n2 directions.
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TABLE 7. B(n1,n2) values generated from neural network model when
R1 = 0.3 and R2 = 0.3.

TABLE 8. B(n1,n2) values with R1 = 0.3 and R2 = 0.3.

TABLE 9. Differences from Table 7 and 8.

As seen from Table 10 and 11, ‘‘1’’ means the system
will accept the arrival, ‘‘0’’ means the system will reject the
arrival and ‘‘−1’’ means there is no such state in the sytem.
From the table we see the system will accept any T1 and T2
arrivals until it reaches the capacity limit. The average reward
is g = 0.4747.

Next, we decrease R1 to 0.1, and keep everything else
unchanged,

TABLE 10. Actions for T1 arrivals for cost function f1.

TABLE 11. Actions for T2 arrivals for cost function f1.

TABLE 12. B(n1,n2) values with R1 = 0.1 and R2 = 0.3.

It is observed from Table 13 and 14, due to the drop in
R1, the model will not accept any T1 arrivals to the system,
meanwhile the actions for T2 arrival is not affected, the model
will accept the T2 arrivals until the capacity limit. Also,
the average reward drops to g = 0.0758.
Next, set a = 0.1 and keep everything else unchanged,

the cost functions becomes

f2(b1, n1, b2, n2) = 0.1n1 + 0.1n2 + 0.001b1 + 0.002b2
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TABLE 13. Actions for T1 arrivals for R1 = 0.1.

TABLE 14. Actions for T2 arrivals for R1 = 0.1.

TABLE 15. B(n1,n2) values with R1 = 0.1 and a = 0.1.

It is observed from Table 16 and 17, with a much smaller
cost function a = 0.1, the model again will accept any T1
or T2 arrivals to the system until the capacity limit. Also,
the average reward comes to g = 0.8802.
Next, we increase R1 back to 0.2, the values for the bias

function are listed in Table 18. Since R1 = 0.2 is larger,
the actions for T1 and T2 arrivals would be the same as the
previous case with R1 = 0.1 which is that it will receive

TABLE 16. Actions for T1 arrivals for R1 = 0.1 and a = 0.1.

TABLE 17. Actions for T2 arrivals for R1 = 0.1 and a = 0.1.

TABLE 18. B(n1,n2) values with R1 = 0.2 and a = 0.1.

any arrivals up to the capacity limit. And the average reward
increases to g = 1.2815.
We have done multiple cases with average model, next

we do some tests with discounted model. With the default
parameter settings, set discount factor be α = 0.1,

From Table 19 it is observed that X (n1, n2) values are
concave decreasing on both n1 and n2 directions. From
Table 20 and 21 the model would receive any arrivals up to
the capacity limit.
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TABLE 19. X (n1,n2) values with α = 0.1.

TABLE 20. Actions for T1 arrivals for α = 0.1.

TABLE 21. Actions for T2 arrivals for α = 0.1.

Next we change the discount factor to 0.9, the X (n1, n2)
values with α = 0.9 are listed in Table 22. It is observed with
a larger discount factor, the X (n1, n2) values drop a lot. But
from Table 23 and 24 the actions for T1 and T2 are the same
as the discount factor α = 0.1.

B. THRESHOLD TO VALUES
From equation (1), the average optimal policy would get
the maximum expected average reward if starting from an
initial state. Therefore, by using the obtained thresholds in

TABLE 22. X (n1,n2) values with α = 0.9.

TABLE 23. Actions for T1 arrivals for α = 0.9.

TABLE 24. Actions for T2 arrivals for α = 0.9.

a policy, we can also calculate the corresponding expected
average reward using equation (1) as shown in the follow-
ing Table 25 and 26. With the default parameter settings
and cost function f2, we know the average reward is g =
1.2815. Using rate uniformization technique, the expected
time between two epoch is 1

c and the expected average reward
between two epochs is 1.2815

c . The calculation runs about
10000 epochs, which means we can collect expected average
reward 10000 times.
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TABLE 25. Threshold to values at α = 0.1 and cost function f2.

TABLE 26. X (n1,n2) values with α = 0.1 and cost function f2.

First set c = 116, we have g̃ = g
c = 0.011, the reward

collected if starting from each state after 10000 epochs is
shown in Table 25, which is around 110.

Next set c = 128.15, this time the expected average
reward between two epochs is g̃ = g

c = 0.01, the reward
collected if starting from each state after 10000 epochs is
shown in Table 26, which is around 100.

Keeping the parameter settings unchanged, for discounted
models, from equation (2), the total discounted expected
reward is the expected discounted summation of reward if
starting from an initial state. Therefore, by using the obtained
thresholds in a policy, we can also calculate the corre-
sponding expected discounted reward using equation (2) as
shown in the following Table 27. The calculation runs about
10000 epochs, the expected time between two epoch is 1

c after
rate uniformization technique, but the change in values can be
ignored after running 5000 epochs.

By comparing the Table 27 and 28, we know the difference
for two different calculations is very small, thus either method
can equally be utilized whenever necessary.

C. UPPER BOUND ANALYSIS
From Theorem 3 and Theorem 4, the upper bound for the
average model and discounted model is largely related to
β0(n1 + 1, n2) and 1n1 f (b1, n1, b2, n2). It can be observed
that n1 can goes up to b40/4c = 10, and n2 is with limit of
b40/10c = 4. Then we have the values of β0(n1, n2) listed
in Table 28.

TABLE 27. Threshold to values at α = 0.1 and cost function f2.

TABLE 28. X (n1,n2) values with α = 0.1 and cost function f2.

TABLE 29. β0(n1,n2) values for each state.

Set the cost function be f3(b1, n1, b2, n2) = 3.3n1 + n2 +
0.001b1+0.002b2, then we have1n1 f3(b1, n1, b2, n2) = 3.3,
and since R1 = 0.2, β0(1, 0) = 16, there is

1
β0(1, 0)

1n1 f3(b1, n1, b2, n2) =
3.3
16

> R1 = 0.2,

According to Theorem 3, the system will not accept any
T1 arrivals from state (0, 0), the X (n1, n2) values and state
actions for T1 arrivals is listed in Table 25, 26 and 27. From
these tables it is observed that although the system will not
accept any T1 arrivals, it would accept T2 arrivals up to the
capacity limit. Also, since no T1 arrival is accepted, the aver-
age reward is again g = 0.0758.
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TABLE 30. B(n1,n2) values with cost function f3.

TABLE 31. Actions for T1 arrivals with cost function f3.

TABLE 32. Actions for T2 arrivals with cost function f3.

Next, we do a similar test with discounted model, keeping
all the parameters in the average model, and set the discount
factor be α = 0.1, we have

1
α + β0(1, 0)

1n1 f3(b1, n1, b2, n2) =
3.3
16.1

> R1 = 0.2,

According to Theorem 4, the system will not accept any
T1 arrivals from state (0, 0), the X (n1, n2) values and state
actions for T1 arrivals is listed in Table 25, 26 and 27. From
these tables it is observed that although the system will not

TABLE 33. X (n1,n2) values with cost function f3.

TABLE 34. Actions for T1 arrivals with cost function f3.

TABLE 35. Actions for T2 arrivals with cost function f3.

accept any T1 arrivals, it would accept T2 arrivals up to the
capacity limit.

VI. CONCLUSION AND DISCUSSION
In this paper, a general situation is investigated for when
datacenter can determine the cost of using resources (num-
ber of virtual machines) and a Cloud service user can
decide whether it will pay the price for the resource or not
when there is an incoming application task. By establish-
ing a Continuous-Time Markov Decision Process (CTMDP)

158110 VOLUME 7, 2019



W. Ni et al.: Optimal Strategy for Resource Utilization in Cloud DCs

model for both the average optimal model and a discounted
optimal model, respectively, the optimal policy for each
model for admitting tasks is verified as a state-related control
limit policy. Further, a detailed statement and verification of
the upper bound for the optimal policy, and a comprehensive
set of experiments on various cases to validate our proposed
solution are provided.

Particularly, the machine learning method is incorpo-
rated to show that the complex relations between parame-
ters of the model and the optimal decision-making policies
can be learned through a feed-forward neural network,
which is a quite simple tool from machine learning’s view.
But it is not our the main concern to compare different
machine learning methods in this paper since the simple
ANN method has already given us a very good result.
We plan to studymoremachine learningmethods in the future
work.

In our future work, we will analyze the optimal system
resources toward the maximal system rewards if only with
partial system information, comparison between different
machine learning methods, etc.
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