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ABSTRACT 

Data Analytics is becoming an essential business tool for many 
data intensive companies and organizations. However, the 
increased use of such methods comes with the threat of data 
disclosure. Privacy-preserving methods have been developed with 
varying degrees of efficiency with the main goal of protecting 
individuals’ privacy. This tutorial aims at presenting models and 
techniques of preserving privacy in machine learning and data 
mining.   
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1   INTRODUCTION 
Concerns about data protection and privacy have been at the 
forefront of distributed data base designers for decades [3, 11]. 
These concerns have only exacerbated with the advent of online 
social networks, e-commerce, smart devices and software as a 
service using the cloud.  Rarely does a month go by without the 
media reporting a data breach in which thousands or millions of 
customers’ personal data, such as Social Security Numbers, credit 
card numbers, etc., have been disclosed [7].  The sheer amount of 
compromised data is a result of companies and organizations, 
such as Amazon and Google, collecting and storing data related to 
their business and customers/users in order to gain insight on how 
to improve their users’ experience.  These data are usually 
uploaded to the cloud and used by data analytics programs to train 
learners and gain business insights and marketing advantage. 

While users may benefit from such efforts by enjoying a better 
user experience, collecting and processing users’ data can 
constitute a threat to their privacy in that it may potentially reveal 
sensitive information about them, such as their spending habits, 
gender preferences, or any other information they deem private. 
Several methods have been developed to enable the collection and 
processing of potentially sensitive data in a privacy-preserving 
manner. Most of these methods rely on procedures for data 
perturbation that mask either the original data or the processing 
results, to protect from disclosure.  
Privacy-preserving methods can be applied pre data analytics in 
which case, the dataset is modified before it is released to the data 
analytics component. These methods rely on various data 
perturbation techniques which satisfy some statistical constraints. 
Alternatively, they can be applied post data analytics, in which 
case the returned results are “anonymized” using output 
perturbation techniques, (refer to Aggarwal and Yu for extensive 
coverage [1]). 

2   PRIVACY VERSUS UTILITY 

A natural consequence of applying Privacy-Preservation is the 
loss of information. The loss of information on specific data items 
may not only affect the quality of the dataset but also that of the 
results obtained from the data analytics component. Hence, 
utility-based privacy preservation techniques have been 
developed with two goals in mind: protecting the private 
information and as much as possible preserving data utility [9]. 

The aim of this tutorial is to present an overview of privacy 
threats, methods used for privacy-preserving data analytics and 
examples of their applications across multiple domains.   

3   TUTORIAL OUTLINE 

This tutorial will introduce the audience to the following aspects 
of privacy-preserving data analytics: 

1) The notion of privacy
2) Attributes and Identifiers
3) Types of privacy attacks:

- “Good credit/Bad credit” a.k.a. Leakage attacks
- “Who gave you my name?” a.k.a. Linkage attacks
- “I know where you have been” a.k.a. Trail Re-

identification attacks
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- “So you got a pay raise!” a.k.a. Tracker attacks 
4) Randomization Techniques 
5) Grouping and Data Partitioning Techniques 
6) Data Obfuscation and Differential Privacy 
7) Inference Control 
8) Secure Multi-party Computation 
9) Attacks techniques on Privacy-Preserving Methods 
10) Privacy approaches for specific machine learning  

techniques such as Neural networks, regression 
analysis, etc.[2, 4, 5, 8] 

4   TEACHING PRIVACY 

An extended version of this tutorial has been developed and has 
been presented as part of a senior and a graduate database course 
and a data mining/machine learning course.  The extended 
version consists of three parts: The Concept of Privacy, Data 
Perturbation Methods, Mining Association Rules and Distributed 
Data under Privacy Constraints.  The parts are independent and 
have been presented several times.  Student surveys show that 
these modules have provided them with an increased awareness 
of the importance of the topic of privacy and the techniques 
available to protect user’s data [6, 10] 

5   SHORT BIOGRAPHY OF TUTORIAL 
PRESENTER 
Lila Ghemri is a Professor of Computer Science at Texas 
Southern University located in Houston, Texas. She received her 
Ph.D. in Computer Science from Bristol University in the UK. 
Ghemri spent ten years in research and industry developing NLP 
and knowledge based systems before joining academia. Her 
research interest include security and privacy in medical data, 
online social networks and mobile applications.  
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