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Abstract

We present analytical expressions for direct evaluation of ℓ-mixing rate coefficients in proton-excited hydrogen
atom collisions and describe a software package for efficient numerical evaluation of the collisional rate
coefficients. Comparisons between rate coefficients calculated with various levels of approximation are discussed,
highlighting their range of validity. These rate coefficients are benchmarked for radio recombination lines for
hydrogen, evaluating the corresponding departure coefficients from local thermal equilibrium.

Key words: H II regions – ISM: abundances – ISM: atoms – methods: numerical – radio lines: ISM

1. Introduction

Energy-conserving angular momentum-changing  ¢nℓ nℓ
transitions induced in collisions between Rydberg atoms and
low velocity ions are needed for accurate comparison between
astrophysical observations and models that employ atomic
theory for temperature and density diagnostics in diffuse
atomic clouds, H II regions, and various nebulae. With ion
collision-induced angular momentum mixing rate coefficients
scaling as n4, values as large as a few times 105 cm3 s−1 are
possible for principal quantum numbers near n∼200.
Accurate and efficiently calculated rate coefficients are hence
necessary to interpret a host of astrophysical processes, such as
radio recombination lines from hydrogen (HRRL) and carbon
(CRRL) as tracers of the neutral phase of the interstellar
medium (ISM; e.g., Oonk et al. 2014, 2017; Salas et al. 2018),
and from hydrogen as a tracer of gas ionized by young stars
(H II regions; e.g., Roelfsema & Goss 1992; Anderson et al.
2011). The recombination of hydrogen and helium in the early
universe, and the primordial abundance of helium, are also
examples of processes affected by collision physics (Chluba &
Sunyaev 2006; Izotov & Thuan 2010).

In their pioneering work, Pengelly and Seaton obtained
proton–Rydberg hydrogen collisional cross sections for dipole
allowed transitions within the Born–Bethe approximation
(Pengelly & Seaton 1964, hereafter PS64). Given that the
probability for Δℓ=±1 transition falls off asymptotically as
the inverse square of the impact parameter and the cross section
hence becomes logarithmically divergent, PS64 invoked a set
of cutoff conditions to circumvent this divergence. The
arbitrariness implicit in choosing these cutoff conditions was
reexamined in Vrinceanu & Flannery (2001a, 2001b, hereafter
VF01a and VF01b), where a non-perturbative closed form
solution for the transition probability was found.

A semiclassical (SC) rate coefficient for arbitrary ℓ-changing
collisions was derived in Vrinceanu et al. 2012 (VOS12), and
was shown to be in agreement with both classical trajectory
Monte Carlo simulations and numerically integrated quantum
rate coefficients for transitions with ∣ ∣D >ℓ 1. For the dipole
allowed transitions (∣ ∣D =ℓ 1), SC probabilities evaluated

by VOS12 increase linearly with impact parameter and at a
critical value abruptly vanish. This unphysical behavior of the
SC transition probability, first noticed in Storey & Sochi
(2015), was addressed by the modified PS64 (PS-M) approx-
imation (Guzmán et al. 2016, 2017). A further improved SC
probability with the correct asymptotic behavior, yielding a
more accurate formula for the dipole transitions, was later
derived by Vrinceanu et al. (2017, hereafter VOS17).
In this work, we derive a computationally efficient formula

of the rate coefficients for collision-induced dipole transitions,
accurate for a broad range of n, temperatures (T), and electron
number densities (ne). This is achieved by using a closed-form
expression for the dipole transition rate coefficients, therefore
overcoming the need for the explicit calculation of cross
sections. In addition, this formulation circumvents an unphy-
sical behavior of the PS64 rate coefficients, which become
negative for a range of astrophysically relevant parameters. The
resulting rate coefficients are then used to evaluate the
departure coefficients from the statistical equilibrium of HRRL.

2. Rate Coefficients for Angular Momentum Changing
Transitions in Proton–Rydberg Hydrogen Scattering

The rate coefficients for n-conserving, ℓ-changing transitions
are obtained by integrating the corresponding transition
probability,  ¢Pnℓ nℓ , over the impact parameter, b, and thermal
distribution of the projectile velocity, v,
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with fMB as the Maxwell–Boltzmann distribution at temper-
ature T. The cutoff distance Rc is required to regularize the
divergent integral for dipole allowed transitions (∣ ∣D =ℓ 1),
when the transition probability decreases too slowly for
 ¥b . For all other cases, the integral is finite as  ¥Rc .

The transition probability does not depend on b and v
independently, but through the collision parameter a =

( )Zn mvb3 2 (VF01a), so that the double integral in
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Equation (1) is reduced to
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where = ´ -a 5.29177 100
11 m is the Bohr radius, =v0

´2.18769 106 m s−1 is the atomic unit of velocity, and the
integration variable is z=3/(2n α). The parameter θ, small for
large Rc, is defined as
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where μ is the reduced mass of the projectile—target system.
When Rc is chosen to be the Debye length

( )l =  k T n eD B e0
2 , as in PS64, this parameter becomes

( )q = ´ - n
n

T
1.704675 10 , 4e10 4

2

with T in K and ne in cm
−3. Depending on the specific physical

situations, other choices for Rc are possible as discussed
in PS64, changing the θ parameter accordingly.

Equation (2) is the starting point for the calculation of the
rate coefficient using various approaches depending on the
choice of  ¢Pnℓ nℓ . The relationships among these approxima-
tions reflect the organization of the software package
(Vrinceanu 2018), and are illustrated in the diagram in
Figure 1, and discussed in detail below.

The rate coefficients are calculated by numerically integrat-
ing Equation (2). This integral does not pose difficulties for
relatively low principal quantum numbers n  40 when using
the VF01b non-perturbative quantum mechanical  ¢Pnℓ nℓ .
However, for larger n, the calculation does not converge
because of truncation errors and near cancellation of large
terms. These problems are addressed in our code by using exact
number arithmetic for large factorials and extended floating
point precision for large order polynomials. The computational
time increases as ∼ℓ×n, to the point that accurate calculations
become impractical; for example, the calculation for n=1000

can take up to 5 minutes. More efficient, but less accurate,
approximations are implemented in the code for large n and ℓ,
when numerical integration of quantum probability is slow.
The method parameter in the code selects the desired
procedure, either quantum, or from the menu of approximations
discussed below, and should be chosen based on the accepted
level in the trade-off of accuracy versus computing cost.
The VOS12 SC formula works well for moderate to large

∣ ∣Dℓ , but loses accuracy for larger ∣ ∣Dℓ , for which the rate
coefficients are small and may be neglected. The VOS12 SC
formula has been derived by integrating the classical limit
of VF01a transition probability, and has been validated by
extensive classical trajectory Monte Carlo simulations. The SC
approximation fails for dipole transitions ∣ ∣D =ℓ 1, because the
SC transition probability increases linearly with the impact
parameter and drops abruptly after a critical value, instead of
decreasing as b−2, as obtained with perturbation theory (PS64).
For dipole transitions, the code provides rate coefficients for

combined  +ℓ ℓ 1 and  -ℓ ℓ 1 transitions. In the Born
approximation,  ¢Pnℓ nℓ is assumed to be 1/2 for R<R1, after
which it decreases as 1/b2. The PS64 formula is derived from this
approximation by adopting the additional assumption that R1<Rc.
This assumption fails for large ne and low T, limiting the range of
applicability of PS64 to ( )- - - < ´n n ℓ ℓ n T1 2.98e

2 2 2 2

109 cm-3/K2. Within this range of parameters, PS64 is in
reasonable agreement with the non-perturbative quantum results,
as demonstrated in the next section. Outside this range, PS64 rate
coefficients become negative (Guzmán et al. 2017; Salgado et al.
2017).
The PS-M approximation introduced in Guzmán et al. (2017)

replaces the constant 1/2 transition probability in the PS64
model with a linearly increasing one, and obtains the rate
coefficient by averaging the resulting cross section over all
energies, including those neglected by PS64 for R1<Rc. The
approximate PS-M rate coefficients shown in table I in Guzmán
et al. (2017) are positive even when PS64 are negative, and
yield an overall better agreement with the quantum results,
although significant deviations are noted in some cases, up to a
factor of 10, probably due to the simplicity of the model.
The shortcomings of the VOS12 SC approximation for

dipole allowed transitions were addressed in VOS17 by

Figure 1. The Lmixing package provides the rate coefficient ( )k n ℓ T n, , , e by using several approximations for the transition probability  ¢Pnℓ nℓ in Equation (2), as
outlined in the table on the left. An example code showing the usage of the package is displayed on the right. By default, the function rate calculates the rate
coefficient for both dipole allowed transitions ¢ = ℓ ℓ 1 by integrating numerically the quantum mechanical probability. For n  40, when integration requires
extended precision and takes a longer time to complete, faster, but less accurate, approximations can be selected with the optional parameter method.
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deriving a more accurate SC probability with the correct large b
asymptotics. When used in Equation (2), the VOS17 transition
probability leads to an SC rate coefficient for dipole allowed
transitions
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where erf is the error function, ( )= - - -D n n ℓ ℓ6 1nℓ
2 2 2 ,

η=0.277855 is the solution of the equation ( ) =j z11
2

z 6, with j1(u) the spherical Bessel function of order 1 and
argument u, and ( ) ( )q= = ´x D n n D T3 4 7.82162 10nℓ e nℓ

4 9 2 .
The coefficients in the asymptotic expansion can be

calculated up to the truncation order Nt by using
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1 for k>0, H0=0, is k the kth harmonic
number, and γ=0.57721 the Euler constant. A derivation of
this formula, and a list of the first eleven Ak and Bk coefficients,
are given in the Appendix. Our experience shows that a
truncation order Nt∼16−20 is sufficient to provide accurate
results.

3. Results

As illustrated in Figure 1, the Python module Lmixing
(Vrinceanu 2018) has a function that calculates the angular
momentum mixing rate coefficient. The required arguments are
the principal quantum number n, the initial angular momentum
ℓ, and the temperature in Kelvin. The optional arguments are the
electron number density ne in cm

−3, the final angular momentum
¢ℓ , and the method of calculation. The choices for this argument
are: quantum (default value) using Equation (2) with the

probability defined by Equation (3) in VF01b, semiclassi-
cal using Equation (5), Born for the Born approximation
Equation (8), PS-M for the approximation in Equation (18)
originally introduced in Guzmán et al. (2017), and P_and_S
which implements the PS64 method. If ¢ℓ is not provided, the
rate for the combined  ℓ ℓ 1 transitions is calculated. If ¢ℓ is
given, one can then choose the exact quantum calculation, or the
SC approximation (Equation (8) in VOS12) with the value for
the method parameter classical, provided that ∣ ∣D >ℓ 1.
Figure 2 shows a comparison between the rate coefficients

coefficients for dipole allowed transitions for ℓ=1 and
ℓ=n−2 angular momenta, calculated by integrating the
VF01b quantum formula, the PS64 approximation and the SC
approximation in Equation (5). The evaluation of the quantum
case for extremely large n is slow even when low accuracy
results are sufficient, due to the use of multiprecision floating
point arithmetic necessary to prevent truncation error and loss
in precision. The calculations in Figure 2 required 400 digits of
precision and took several hours for ℓ=1 cases and two days
for ℓ=n−2 cases to complete on a single processor. At
around n=200, in the ℓ=1 case, the PS64 approximation
fails and becomes negative for higher n, as first discussed in
Salgado et al. (2017), and in the caption of Table 1 in Guzmán
et al. (2017), while the SC approximation is in good agreement
with the quantum results over a much larger range of n. For
sufficiently low T and high ne, the SC rate coefficients for n 
500 overestimate the corresponding quantum result, then
underestimate the latter at even higher n (not shown in
Figure 2), eventually becoming negative. However, unlike the
case of PS64, the negative-defined region occurs for progres-
sively higher values of n as more terms in the expansion of
Equation (5) are considered. In the ℓ=n−2 case, the PS64
results are more reliable with respect to the corresponding ones
at low angular momentum, and begin to diverge from the exact
results for n>700, becoming negative at around n=1000.
The overall shape of the dependence of the rate coefficient k
with n is the result of two competing factors, as seen in
Equation (5): on the one hand the prefactor in front of the
integral increases as n4, while the integral decreases roughly as
1/θ. For comparison, we also include in Figure 2 the PS-M rate
coefficients which behave more consistently with n than

Figure 2. Rate coefficients for combined ( ) ( ) n ℓ n ℓ, , 1 transitions vs. n for transitions of extreme eccentricities ℓ=1 (a) and ℓ=n−2 (b), at T=10 K and
ne=100 cm−3. The solid line is obtained by using Equation (5) with Nt = 16, dots refer to the direct integration of the quantum transition probabilities, dashed lines
and dotted–dashed lines represent the PS64 Equation (9) and PS-M Equation (18) results, respectively.
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the PS64 model in the ℓ=1 case, and approach the quantum
results at large n. However, other than the large n limit for
ℓ=1, PS-M predicts rate coefficients that are consistently
smaller than QM and SC values, as particularly evident in the
ℓ=n−2 case.

In Figure 3, the differences of the PS64 approximation (left
panel) and of the SC approximation (right panel), both relative
to the quantum rate coefficients, are shown for astrophysically
relevant values of n, T, and ne, and for the =ℓ 1 transition. The
SC approximation is accurate within 1% over a wide range of T
and n, while the accuracy of PS64 is roughly one order of
magnitude worse at the same point in the -n T ne

2 plane.
The PS64 approximation yields negative rate coefficients in the
upper left corner of the diagram, in the low T, high ne, and high
n regime. As already discussed for Figure 2, the SC rate
coefficients also become negative in the upper left corner, but
in comparison to the PS64 case this occurs for a smaller region
with size inversely proportional to the number of terms Nt in
Equation (5). These cases are extreme, but important for the
interpretation of HRRLs that probe the low electron density,
cool ISM (e.g., Salgado et al. 2017 and references therein). The
SC approximation obviously becomes less accurate in the
region for which the PS64 rate coefficients approach negative
values. This is also expected because for these parameters
l  n aD

2
0, indicating that the binary collision assumption may

fail, with the ℓ-mixing instead dominated by many-body
interactions. If the opposite case of ℓ=n−2 is considered,
the rate coefficients for PS64 and the SC approximations are
much closer, in line with what is expected by inspecting the
corresponding curves in Figure 2. Figure 3 puts on a more
quantitative standing the recent debate on the accuracy of
various proposed rate coefficients as reported in Storey & Sochi
(2015), Guzmán et al. (2016, 2017), and Williams et al. (2017).
The SC approximation is in general more accurate than the
above approximations because the VOS17 transition prob-
ability agrees better with the quantum results. It was noticed in
Guzmán et al. (2017) that for some extreme cases, the PS-M
overestimates the quantum results by a factor of 10.

The HRRL results shown in Figure 4 were produced with the
Salgado et al. (2017) models using the updated ℓ-changing
collision rate coefficients, Equation (5) with Nt=10 and, as a
comparison, also using the PS64 rate coefficients. The latter are

known to be in good agreement with the quantum mechanical
rate coefficients for sufficiently high T, high ne, and low n.
We show in Figure 4 the results for the departure coefficients

from a thermal population, bn, for a homogeneous gas slab with
(i) Te=100 K and ne=0.1 cm−3, and (ii) Te=10 K and
ne=100 cm−3. The former is a typical cool ISM case and the
latter is an an extreme case. Both are exposed to a Galactic
power-law radiation field lµTR

2.6 that is normalized at 100
MHz by TR,100=2000 K (Salgado et al. 2017). We find that
the different ℓ-changing collision rate coefficients primarily
affect bn at low to intermediate n values (n  300) with
differences up to a few percent for typical cool ISM conditions.
As explained in Salgado et al. (2017), but see also Hummer &
Storey (1987), this is because at these intermediate n levels
collisions compete with spontaneous decay, effectively storing
electrons in high ℓ sublevels for which radiative decay is less
important. Notably, the ℓ-changing collision rate coefficients
presented here allow us to efficiently calculate bn values for
high n, where the PS64 rate coefficients no longer apply, and
which are important to studies of cool, partially ionized ISM
(e.g., Oonk et al. 2017; Salas et al. 2018).
The HRRL optical depths are calculated using the product of

bn βn, where the correction factor for stimulated emission βn
can be seen as the derivative of bn (Salgado et al. 2017), such
that small changes in bn can lead to somewhat larger changes in
HRRL optical depth. These changes are measurable, but
require very high signal-to-noise observations across a broad
frequency range (i.e., 240–2000 MHz). Most HRRL observa-
tions have difficulties achieving such accuracy, and hence the
calculated differences will be within current observational
uncertainties for typical ISM conditions. We have also
compared the HRRL results presented here with those
computed using the VOS12 SC rate coefficients (Salgado
et al. 2017). We find that for these cases the results agree to
within a few percent for n300. For lower n-values the
agreement is less good.
We are currently implementing our new ℓ-changing rate

coefficients for CRRLs, as will be presented in a future work.
Although we anticipate that the results may be qualitatively
similar to those for HRRLs, from a quantitative standpoint we
expect to have stronger dependence of the departure

Figure 3. Discrepancies for the rate coefficients calculated with the PS64 approach (left) and the SC approximation (right), both referred to the non-perturbative rate
coefficients evaluated using the quantum formula, for a broad range of n and T ne

2 .
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coefficients on the ℓ-changing collision rate coefficients than
HRRLs (Salgado et al. 2017).

4. Conclusions

We have introduced an efficient and accurate SC approx-
imation for ℓ-mixing processes, allowing direct evaluation of
collisional rate coefficients for a broad range of n, T, and ne
relevant to astrophysical plasmas. We provide a Python module
for evaluating these rate coefficients for easy integration in
large-scale radiative-collisional simulation codes. The Python
code also implements a multiprecision numerical integration of
the quantum rate constants for small to moderate n. The
relationship and range of validity and accuracy for various
schemes to evaluate ℓ-changing rate coefficients are elucidated.
Furthermore, we identify the range of parameters for
which PS64 rate coefficients become unphysical. Efficient
computer codes for the evaluation of ℓ-mixing rate coefficients
with various levels of approximation are beneficial for accurate
astrophysical modeling. As noted in the recent release of
Cloudy (Ferland et al. 2017), different choices for the rate
coefficients can lead to differences up to 10% in the predicted
line intensities, which are larger than the precision of current
observations. The rate coefficients proposed here are in better
agreement with the more rigorous, but computationally less
efficient quantum rate coefficients.

This work was supported by the National Science Founda-
tion through a grant to ITAMP at the Harvard-Smithsonian
Center for Astrophysics. One of the authors (D. V.) is also
grateful for the support received from the National Science
Foundation through grants PHY-1831977 and HRD-1829184.
J. B. R. O. and P. S. acknowledge financial support from the

Dutch Science Organization (NWO) through TOP grant
614.001.351.
Software: Lmixing (Vrinceanu 2018).

Appendix
Detailed Derivations

This section presents the derivations of the main results and
implementation details of the computational module. Accord-
ing to the organization of the code illustrated in Figure 1 we
will discuss the four main sections, (i) the integration of the
exact quantum formula, (ii) the Born approximation, (iii) the
classical approximation, and (iv) the SC approximation.
These approaches are derived from Equation (2) either by
keeping the exact, but computationally expensive form for the
transition probability  ¢Pnℓ nℓ , or by replacing it by an
approximate expression that provides quicker results with a
limited range of validity. The goal is to calculate the
dimensionless integral in Equation (2)

˜( ) ( ) ( )òq¢ = q
¥

 ¢
-k n ℓ ℓ zP z e dz, , , . 6nℓ nℓ

z

0

22

The exact calculation uses the quantum transition probability
derived in (VF01b), which has practical use limited to small
(n<30) quantum numbers in regular computer arithmetic. The
main two reasons for this difficulty are the combinatorial
Wigner 6-j symbols involving factorials of large integers that
cannot be represented exactly with integer types, and the loss of
precision in the calculation of polynomials of large order with
alternating terms. Our code takes advantage of the unlimited
size integer type in Python by precomputing tables of large
factorials, and by using fixed-point representations of real
numbers with a prescribed, but arbitrary, number of decimal
figures. As a rule of thumb, we find that a calculation for

Figure 4. Calculations of the bn departure coefficient from collisional-radiative simulations of hydrogen for two cases: T=100 K and ne=0.1 cm−3 (blue lines), and
T=10 K and ne=100 cm−3 (red lines). The upper plot shows bn calculated by using PS64 (dashed lines) and by using the SC approximation (solid lines). The lower
plot shows the relative difference between the results using the two approximations for each case considered. The dotted line and the circled point mark the maximum
n for which PS64 provides convergent results in the low T, high ne case. When converged, the PS64 and SC results agree with a maximum difference of few percent.
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quantum numbers n requires setting the precision at n/2 digits.
The numerical integral Equation (6) is calculated with a
recurrent Gauss–Lobatto-Kronrod algorithm from Press et al.
(1992) adapted for the use of extended precision real numbers.

A Born approximation is obtained from perturbation theory
(VOS17) only for dipole allowed transitions. The cumulative
probability for both  ¢ℓ ℓ transitions is approximated as

⎪
⎪
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with ( )= - - -D n n ℓ ℓ6 1nℓ
2 2 2 . When used in Equation (6),

this transition probability provides the Born approximation for
the rate
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where Γ(0, x) is the incomplete gamma function. The PS64
result was derived under the same conditions with the
additional tacit assumption that the cutoff impact parameter
Rc is greater than the R1 parameter (Rc>R1) for any projectile
speed. Since the transition impact parameter increases with the
speed of the projectile as ∼1/v, the thermal average
Equation (1) will have a contribution from small speeds for
which R1>Rc. This contribution, neglected in PS64,
diminishes as  ¥Rc . Indeed, the PS64 rate is obtained from
Equation (8) in the q  0 limit

˜ ( ) [ ( )] ( )( ) q g q= - -k n ℓ
D

n
D n, ,

4
1 log 2 , 9PS nℓ

nℓ4
4

where γ is the Euler constant. This corresponds to Equation
(43) in PS64. The rate coefficients in Equation (9) become
negative for n large enough such that q > g-D n e2nℓ

4 1 . In
other words, the PS64 approximation is limited to cases where

( )- - - < ´n n ℓ ℓ n T1 2.98 10e
2 2 2 2 9, which for small ℓ
reduces roughly to < ´n n T 3 10e

4 2 9, and for large ℓ

to <n n T 10e
3 2 9.

An SC transition probability, compatible with the Born
approximation and increasing linearly for small impact
parameter, as predicted by the classical approximation, was
obtained in (VOS17). In terms of the parameter z, the
unresolved transition probability, summed over the ¢ℓ and
slightly modified in order to give a better agreement with the
quantum results, is
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where j1(x) is the spherical Bessel function of order 1, and
η=0.277855 is the solution of the equation ( ) =j x x1 61

2 .
When used in Equation (6), one gets the SC approximation for
the rate coefficient
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where q=x D n3 4nℓ
4, and erf is the error function. The

integral can be treated as a Mellin–Barnes integral (Paris &
Kaminsky 2001) to obtain an asymptotic expansion in the
parameter x, because
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where the integral goes along a line parallel with the imaginary
axis with 0<c<2, and where F and G are the Mellin
transforms
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Therefore, the integral is
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An expansion for small x can be obtained by completing the
integration along another line parallel with the imaginary axis,
to create a contour around poles on the negative real axis and
using the residue theorem. The poles of the integrand occur at
negative even numbers s=0,−2,−4, K,−2k, K and are
double. The double nature of the poles is the origin of the
logarithm in the expansion of I(x). The poles at
s=1,−1,−3, K are removable and do not contribute to
the expansion. Therefore, after calculating the residues, one
obtains
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where γ is the Euler constant, and the coefficients are
( !( )!( )( )( ))= ´ + + + +A k k k k k18 4 2 1 2 3 2 3k

k and =Bk

( ) ( ) ( )+ + + + +k k k1 2 1 3 2 2 3 + + +¼+1 1 2 1
+ +k 2 2 3 ( )+¼+ +k2 2 1 . With the first 11 terms listed

in Table 1 the expansion of Equation (16) is accurate within
one part in 104 for x�50.
A modified PS64 approximation was obtained in (Guzmán

et al. 2017) by replacing the original constant 1/2 for b<R1

with a linearly increasing transition probability. When written
in terms of the dimensionless parameter z, as defined in the
discussion following Equation (2), this approximate transition
probability is
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with the free parameter P1 equal to the transition probability at
the matching impact parameter. The integral Equation (6) in
this case yields the PS-M approximation

⎡
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with parameter ( )b q= D P n4nℓ 1
4 .
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k Ak Bk

0 1 7/2=3.5
1 1/5=0.2 113/20=5.65
2 3/350=0.00857142857142857 2857/420=6.80238095238095
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8 1/25408725942600000=3.93565581469558×10−17 575762023/58198140=9.89313443694249
9 1/25932145697017560000=3.85621772946852×10−20 42376261/4157010=10.1939280877361
10 1/35244143470037502000000=2.83735083773604×10−23 1000753049/95611230=10.4668985954893
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