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the logic behind neural control of 
breathing pattern
Alona Ben-tal  1, Yunjiao Wang2 & Maria C. A. Leite3

the respiratory rhythm generator is spectacular in its ability to support a wide range of activities and 
adapt to changing environmental conditions, yet its operating mechanisms remain elusive. We show 
how selective control of inspiration and expiration times can be achieved in a new representation of 
the neural system (called a Boolean network). the new framework enables us to predict the behavior 
of neural networks based on properties of neurons, not their values. Hence, it reveals the logic behind 
the neural mechanisms that control the breathing pattern. our network mimics many features seen in 
the respiratory network such as the transition from a 3-phase to 2-phase to 1-phase rhythm, providing 
novel insights and new testable predictions.

The mechanism for generating and controlling the breathing pattern by the respiratory neural circuit has been 
debated for some time1–6. In 1991, an area of the brainstem, the pre Bötzinger Complex (preBötC), was found 
essential for breathing7. An isolated single PreBötC neuron could generate tonic spiking (a non-interrupted 
sequence of action potentials), bursting (a repeating pattern that consists of a sequence of action potentials fol-
lowed by a time interval with no action potentials) or silence (no action potentials)8. These signals are transmit-
ted, through other populations of neurons, to spinal motor neurons that activate the respiratory muscle4,6. The 
respiratory muscle contracts when it receives a sequence of action potentials from the motor neurons and relaxes 
when no action potentials arrive9. Hence, the occurrence of tonic spiking, bursting and silence can be associated 
with breath holding, breathing and no breathing (apnoea) respectively10. Tonic spiking, bursting and silence also 
appear in a population of coupled preBötC neurons when it is isolated in vitro11,12. Breathing can be performed 
with different combinations of frequency and amplitude to meet the body metabolic needs. However, the abili-
ties to hold the breath and not to breathe are also important for supporting other activities such as diving, vocal 
communications and eating. Hence, we also expect to find tonic spiking, bursting and silence in a population of 
coupled preBötC neurons when it is embedded in the brainstem. The occurrence of bursting in the preBötC when 
this population interacts with other populations of neurons in the brainstem has been studied experimentally6,13. 
It was found that the preBötC population is activated during inspiration for about a third of the respiratory cycle, 
while two other distinct populations of neurons (called post-I and aug-E) are active consecutively during the 
remaining expiratory time of the cycle13. This was called a 3-phase pattern. A change in the conditions of the 
brainstem such as decreased carbon dioxide, transforms the 3-phase into a 2-phase pattern of inspiration and 
expiration where only one population of expiratory neurons (aug-E) remains active6. In extreme conditions of 
hypoxia (lack of oxygen), and despite being embedded in the brainstem where it could potentially interact with 
other populations of neurons, only the preBötC population remains active, generating a 1-phase pattern, similar 
to the pattern generated by the isolated preBötC population6,14. When the preBötC population activates the res-
piratory muscle, the 3-phase pattern leads to a normal breathing pattern while the 1-phase pattern leads to gasp-
ing - a breathing pattern with an abrupt inspiration. These findings illustrate the state-dependency and incredible 
plasticity of the respiratory neural network which are essential for survival. However, the existence of multiple 
mechanisms for generating breathing also makes understanding how the neural system works more difficult and 
may explain why it remains elusive.

Many of the experimental studies of the respiratory neural network were accompanied by theoretical studies 
using mathematical and computational models8,11,15–19. These models rely on differential equations with parame-
ters that cannot always be measured directly and need to be estimated. Additionally, none of the existing models 
provide a clear understanding of how selective control of inspiration and expiration times can be achieved. In 
order to translate the models from the animal on which the experiments where based to humans, the models 
need to be re-scaled. This is because respiratory rates differ significantly across species. However, our impaired 
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understanding of neural control of breathing and our inability to measure or estimate parameters in human mod-
els, make the translation from animals to humans difficult. The aim of this study is to unravel the logic behind 
the operation of the respiratory neural network and to provide a general mathematical framework for the study 
of neural control of breathing in all mammalian species. We do this by using Boolean networks in which the 
nodes could have only two values: “1” or “0”20–24. Our approach stems from the observation that the amplitude of 
action potentials is not functionally important - control signals stimulating the neural system (called tonic drive) 
convey information by changing the rate (frequency) of the action potentials, not their amplitude. We represent 
an action potential by “1” and the time that passes between action potentials by a sequence of “0”s. This allows 
us to generate signals that consist of spiking at various frequencies as well as other types of signals or patterns 
such as bursting, a critical characteristic of the respiratory rhythm generator. The control signals that stimulate 
the neural system, arrive from other brainstem regions and are regulated by chemoreceptors (which sense blood 
partial pressures of O2 and CO2) and mechanoreceptors (which sense lung inflation)6,25. Variations in the spik-
ing frequency of control signals result in adjustments to the breathing pattern and ensure that blood gas partial 
pressures are maintained at the same levels. The Boolean network we present in this paper enables us to explore 
a key question for understanding control of breathing: how are the activation and quiescent times in a bursting 
signal changed selectively by varying the rate of tonic spikes in a control input signal? Such control of timing is 
crucial for supporting a wide range of activities involving breathing with diverse and dynamic combinations of 
inspiration and expiration times.

Results
Notation and framework setup. Figure 1, panels A and B, show two examples of Boolean networks that 
can produce bursting in response to a tonic spiking input. The node C1 denotes a control signal input and the 
node X1 signifies a neural output. The nodes I1 and ···S S S, , , k1 2  represent internal processes of the neuron X1. 
Connections between nodes could be excitatory (→) or inhibitory (). The states of all the nodes are updated 
simultaneously every step based on the current states of all the other nodes. This is done according to the follow-
ing Rules (adapted with some modifications from Albert et al.21,26, see the Discussion for the neurophysiological 
interpretation):

 (a) A node will be “1” in the next step if N activators are “1” in the current step and all the inhibitors are “0”; 
We call the number N a threshold and it can change from node to node;

 (b) A node will be “0” in the next step if there are less than N activators which are “1” in the current step;
 (c) A node will be “0” in the next step if at least one of the inhibitors is “1” in the current step, regardless of the 

state of the activators.

As the steps progress forward, we get a sequence of states for each node, called a trajectory. These trajectories 
could have certain characteristics:

 (I) The trajectory ··· ≡(000 ) (0) is silent.
 (II) The trajectory ··· ≡(111 ) (1) is tonic spiking with period 1.

 (III) The trajectory ···� � �� ��� ���≡











(10 010 0 ) 10 0

p

 is tonic spiking with period p.

Where the over-line denotes a repeated pattern.
The trajectory of node C1 (the control input signal) is always tonic spiking with period p, where p is a control 

parameter. The trajectory of the output X1 could, in principle, be silent or tonic spiking and could also exhibit 
bursting or mixed mode oscillations. For example, the trajectories (111000), (10101000) or (11101010010000) 
exhibit bursting and the trajectories (1010100100) or (11101010) exhibit mixed mode oscillations (a formal defi-
nition of bursting and mixed mode oscillations is given in the Methods).

There is one potential problem in the scheme we just presented here. If C1 = 0 in the current step, how do we 
know if it will be “1” or “0” in the next step? We show in Methods, Lemma 1, that this problem can be solved 
by keeping track of the states in another Boolean network, enabling us to know the value of C1 at every step. We 
further show in Lemma 1, that by increasing the number of connections in the network we can reduce the fre-
quency of the spikes. This can be interpreted as changes in the internal properties of a neuron due to variations 
in a biophysical parameter.

Characteristic response of minimal bursting networks. The Boolean networks we constructed in 
Fig. 1, panels A and B, represent some other properties of neurons. Specifically, the nodes ···S S S, , , k1 2  represent 
“memory” – the build-up of voltage potential in the neuron when it receives action potentials from external 
sources. The parameter k is the size of the memory. In network A (Fig. 1), the memory is preserved even after an 
action potential is generated in X1 (i.e. the state of X1 is “1”). However, an action potential will erase some of the 
memory in network B (Fig. 1) in the time step following X1 becoming “1”. The parameter m gives the size of the 
memory that remains. The node I1 represents self excitation – a property that has been shown to exist in certain 
neurons, including the preBötC8. We show in panels C and D (Fig. 1) that each of the networks A and B has its 
own characteristic response when the period of the input signal increases (the tonic spiking frequency decreases). 
In both networks, X1 exhibits spiking (1) for a low period of C1 (high spiking frequency) and silence (0) when the 
period of C1 is high (the spiking frequency is low). For mid-range values of C1, both networks exhibit bursting 
with increasing breathing (bursting) period as the period of C1 increases. However, in network A, an increase in 
the breathing period is always accompanied by a reduction in inspiration time (number of consecutive “1”s), 
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while in network B, the inspiration time is constant. This characteristic response depends on neural properties 
such as the existence of memory, existence of a threshold and self excitation regardless of the actual values of these 
properties (provided the values are feasible). The actual values will affect the number of consecutive “1”s within a 
burst and the points where transitions from tonic spiking to bursting to silence occur but will not change the 
characteristic response qualitatively (see Methods for a proof of our general result).

Constructing a larger bursting network. While all the Boolean networks we found exhibit bursting (see 
the Supplementary Material and Methods), none allow for independent control of inspiration time and expiration 
time through variations in the period of C1. However, we can achieve independent control of the bursting pattern 
by connecting one type-A network (Fig. 1, Panel A) with two type-B networks (Fig. 1, Panel B). The structure of 
the larger network is shown in Fig. 2. The output of each sub-network is denoted by X1, X3 or X4 and the control 
input to each sub-network is denoted by C1, C3 or C4. For simplicity, we only show the first node to which the 
control input connects (S i

1, where i is the sub-network number, this is equivalent to S1 in Fig. 1). This structure can 
be related to a schematic representation of the respiratory neural network hypothesized by Smith et al.6. The cen-
tral pattern generator in Smith et al.6 consists of four core populations of neurons: “pre-I” (a population of neu-
rons within the PreBötC region, active during inspiration), “early-I” (a population of neurons within the PreBötC 
region, active during inspiration), “post-I” (a population of neurons within the BötC region, active in the first 
phase of expiration, under normal conditions) and “aug-E” (a population of neurons within the BötC region, 
active in the later phase of expiration, under normal conditions). The three populations, early-I, post-I and aug-E, 
mutually inhibit each other. Post-I and aug-E also inhibit pre-I, while pre-I excites early-I. In our large network, 
the sub-network X1 could represent pre-I, X3 could represent aug-E and X4 could represent post-I. Sub-network 
X2, which is missing from our diagram, could represent early-I. Unlike Smith et al.6, we found that this 
sub-network is not essential for generating and controlling the bursting signal. Another difference between our 

Figure 1. Examples of Boolean networks and their characteristic response to an input signal C1. An action 
potential (spike) is represented by “1” and the time that passes between action potentials is signified by a 
sequence of zeros. Panel (A) shows a network where the memory (represented by ···S S S, , , k1 2 ) is preserved after 
an action potential has been generated in X1. Panel (B) shows a network with self excitation (depicted by I1) 
where some of the memory is erased after a spike has been generated (the nodes ···S S S, , , m1 2  convey the 
memory that remains). Panel (C) shows the response of Network A and Panel (D) shows the response of 
Network B to changes in the period of C1. In both networks when the period of C1, p, is low (the spiking 
frequency is high), X1 exhibits tonic spiking with period 1 (i.e. ···=X 1111 ). When =p k/ +N 1 in Network A, 

= +p m 2 in Network B, bursting appears (for example, ···=X 111000011100001 ). When ≥p k/ −N( 1) in 
Network A, ≥p k in Network B, X1 exhibits silence (i.e. ···=X 0001 ). The number of consecutive “1” within a 
burst is reduced in Network A as the period of C1 increases but stays constant in Network B (the only exceptions 
are when = +p m 1 and = −p k 1 where we get different kinds of bursting, see Theorem 5). This 
characteristic response does not depend on the actual values of k (memory size), m (size of memory that was not 
erased) and N  (threshold of X1 in Network A).
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network and the network hypothesized in Smith et al.6 is that X3 is not affected by the other populations (see also 
the Section Mechanism of pattern generation). The control signals C1, C3 and C4 could represent, respectively, 
tonic drives from other brainstem regions such as the nucleus of the solitary tract (NTS; thought to be regulated 
by pulmonary mechanoreceptors and peripheral chemoreceptors6), RTN (thought to be regulated by central 
chemoreceptors, mainly sensitive to CO2

25) and the Pons6. Note however, that our results do not depend on this 
interpretation.

transitions between states in the larger network. Figure 3 shows the output of the larger network. If 
the periods of C1 and C4 are low (tonic spiking frequency is high) and the period of C3 is medium (relatively), the 
system exhibits a 3-phase pattern where X1 is active during phase “I” (inspiration), X4 is active during phase “E1” 
(first phase of expiration) and X3 is active during phase “E2” (second phase of expiration). If the period of C4 is 
large enough (tonic spiking frequency is low enough), X4 becomes inactive and the system exhibits a 2-phase 
pattern where X1 is active during inspiration and X3 is active during expiration. If the period of C3 is large enough 
(tonic spiking frequency is low enough) and the period of C1 is medium (relatively), the system displays a 1-phase 
pattern where X3 is inactive and only X1 is bursting akin to gasping14. We refer to the periods of the control inputs 
as “low”, “medium” or “large” when, if acted on their respected isolated population, they result in tonic spiking, 
bursting or silence respectively (the actual values will depend on the size of the memory and threshold in each 
population). The transition from 3- to 2- to 1- phase pattern seen in our model is consistent with reducing energy 
due, for example, to lack of oxygen6,14,27. The system is also capable of displaying tonic spiking if the period of C1 
is low and the periods of C3 and C4 are high (not shown in the figure) and silence if the period of C3 is low or if the 
periods of C1, C3 and C4 are all high.

Controlling inspiration and expiration times. The inspiration and expiration times within the 3-phase 
pattern can be controlled by varying the periods of C1, C3 and C4 (see Fig. 4). The period of breathing and expira-
tion time can be increased (keeping inspiration time constant) by increasing the period of C3 (Panel B, Fig. 4, this 
result is consistent with experiments in which RTN was excited28). Expiration time can be decreased and inspira-
tion time increased (keeping the period of breathing constant) by increasing the period of C4 (Panel C, Fig. 4). The 
inverse effect (increasing expiration time and decreasing inspiration time while keeping the period of breathing 
constant) can be achieved by increasing the period of C1 (Panel A, Fig. 4). Increasing the inspiration time while 
keeping expiration time constant can be achieved by tuning the periods of C3 and C4 simultaneously. Figure 4 also 
shows that there is some variability in the timing of the bursting signals. This is due to the order in which spikes 
arrive as inputs through the control signals C1, C3 and C4 which can change depending on initial conditions and 
the periods of the control signals. This explains some of the inherent noise observed in the biological system. Our 
model predicts that the variability in inspiration and expiration times increases when the periods of C1 and/or C4 
increase (tonic drive frequency from NTS and/or the Pons decrease).

When the system exhibits a 2-phase pattern, increasing the period of C1 will have a similar effect to the one 
seen in Panel A, Fig. 4. That is, as the period of C1 increases (tonic spiking frequency decreases), the expiration 
time increases, inspiration time decreases and the period of breathing stays constant (Panel A, Fig. 5). However, 

Figure 2. Schematic description of a larger network that provides better control of expiration and inspiration 
time. The Net A and Net B sub-networks are shown in Fig. 1, Panels (A and B) respectively. Here we only show 
the output and the first node to which the control input connects (S i

1, where i is the sub-network number, this is 
equivalent to S1 in Fig. 1, see Figs S9, S10 and S11 for more details). This structure can be related to the 
schematic representation of the respiratory neural network hypothesized in Smith et al.6. Sub-network X2, is 
deliberately missing from our diagram. Unlike Smith et al.6, we found that this sub-network is not essential for 
generating and controlling the bursting signal.
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increasing C3 increases the inspiration time while keeping the expiration time constant (Panel B, Fig. 5). This is the 
reverse effect of that seen in the 3-phase pattern and an interesting prediction of our model. This prediction can 
be tested by combining experiments where a 2-phase pattern was imposed by a ponto-medullary transection29, 
with experiments where RTN was excited28. Another prediction of our model is that the variability in the timing 
of the pattern gets larger as the period of C1 increases but stays constant when C3 is varied. When the system 
exhibits a 1-phase pattern (i.e. only X1 remains active), it behaves like the isolated network in Panel D, Fig. 1, that 
is, as the period of C1 increases (the frequency decreases) expiration time increases but inspiration time remains 
constant. This behavior is consistent with experiments described by Koizumi et al.30.

other types of patterns. Our model can produce other types of patterns. Figure 6, Panel A, shows dynamic 
changes in inspiration time. This situation can arise if the periods of C1, C3 and C4 increase (the spiking frequency 
of NTS, RTN and the Pons decrease respectively) such that X3 (aug-E) is silent and both X4 (post-I) and X1 (Pre-I) 
are in bursting states (when isolated). In Panel B, the periodic breathing is suppressed by increasing the spiking 
frequency of NTS (decreasing the period of C1). This leads to another way by which a 2-phase pattern can be 
achieved where X3 is silent and X4 is bursting as opposed to the 2-phase pattern seen in Fig. 3 where X3 is bursting 
and X4 is silent. This new observation of our model is highly relevant for understanding the behavior of the res-
piratory system in disease states (for example, central sleep apnoea).

Mechanism of pattern generation. In the larger network we presented in Fig. 2, bursting in the 3-phase 
pattern and in the 2-phase pattern is driven by the activity of X3. The behavior of X3 is determined only by the 
controller C3; different periodic signals of C3 lead to different patterns in X3 as shown in Fig. 1, Panel D.

 1. When X3 is in a bursting state, then if it is active, both X1 and X4 are inhibited and if it is quiescent, both X1 
and X4 could in principle be activated, depending on the period of their control signals (C1 and C4 
respectively). If the threshold of X1 is lower than the threshold of X4 and the frequency of C1 is higher than 
the frequency of C4 then X1 will be activated first.

 (a) When X4 is activated, it terminates X1. When X3 becomes active again (due to its bursting state), X4 is 
terminated. This creates the 3-phase pattern (see Fig. 7).

 (b) If X4 is not activated because the period of C4 is too high (frequency is low) then X1 will stay active 

until X3 becomes active again and we get a 2-phase pattern.
 2. When X3 is in a spiking state (the period of C3 is low, see Fig. 1, Panel D), both X1 and X4 are inhibited all 

the time.

200 300 400 500 600
Step

0

0.5

1X
1

200 300 400 500 600

0

0.5

1
X

3

200 300 500 600

0

0.5

1X
4

200 300 400 500 600
Step

0

0.5

1X
1

X
3

X
4

200 300 400 500 600

0

0.5

1

200 300 500 600

0

0.5

1

200 300 400 500 600
Step

0

0.5

1X
1

200 300 400 500 600

0

0.5

1X
3

200 300 400 500 600

0

0.5

1X
4

300

300

300

300

400

400

0

0

400 400

I I IEE1 E2

3-phase pattern 2-phase pattern 1-phase pattern

Period of C
Period of C
Period of C

Figure 3. Transition from 3- to 2- to 1-phase pattern in the larger network (Fig. 2). In the 3-phase pattern, X1 is 
active during phase “I” (inspiration), X4 is active during phase “E1” (first phase of expiration) and X3 is active 
during phase “E2” (second phase of expiration). In the 2-phase pattern, X1 is active during inspiration, X3 is 
active during expiration and X4 is inactive. In the 1-phase pattern only X1 is bursting. We used the following 
parameters to generate this figure. For X1 and X3, =k 400, =N 2, =m 100. For X4, =k 800, =N 3. The 
3-phase pattern is shown here when the period of =C 51 , the period of =C 1103  and the period of =C 324 . For 
the depicted 2-phase pattern, the period of C4 is increased to 1000. The 1-phase pattern is shown here when the 
period of =C 10004  (same as for the 2-phase pattern), the period of =C 5003  and the period of =C 1101 .
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 3. When X3 is in a silence state (the period of C3 is high, see Fig. 1, Panel D), the behavior of the network is 
controlled by C1 and C4.

 (a) If the period of C4 is high and therefore X4 is in a silence mode, we get a 1-phase pattern if the period 

of C1 is such that X1 is in a bursting state. Otherwise we could either get silence if the period of C1 is 

high (frequency is low) or spiking if the period of C1 is low (frequency is high).

 (b) If the period of C4 is low and therefore X4 is in a spiking state, X1 is inhibited all the time.

 (c) If however, the period of C4 is such that X4 is in a bursting state then more complex dynamics can arise 
where the inspiration period varies over time (see Fig. 6).

Figure 7 can explain the control of timing within a 3-phase pattern seen in Fig. 4. An increase in the period of 
C3 will increase the first phase of expiration due to the characteristic behavior of the X3 sub-network seen in Fig. 1, 
Panel D, where only the number of “0”s increases as C3 increases. An increase in the period of C1 will increase the 
time to activate X1, hence inspiration time will decrease and the second phase of expiration will increase. An 
increase in the period of C4 will result in a longer time to activate X4, therefore inspiration time will increase and 
the first phase of expiration will decrease. While the period of bursting is constant when viewing the X3 signal, it 
is varied when viewing the X1 signal. This is due to the different times at which a “1” can arrive from the control 
signal C1 and because the period is measured from the beginning or end of a burst.

Within a 2-phase pattern, inspiration will end when X3 is activated. Hence, an increase in the period of C3 will 
increase the inspiration time (not the expiration time as was the case in the 3-phase pattern). An increase in the 
period of C1 will decrease the inspiration time, as has been the case for the 3-phase pattern. This behavior is shown 
in Fig. 5.
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Figure 4. Controlling inspiration and expiration times within the 3-phase pattern. The period of breathing and 
expiration time can be increased (keeping inspiration time constant) by increasing the period of C3 (RTN, Panel 
(B)). Expiration time can be decreased and inspiration time increase (keeping the period of breathing constant) 
by increasing the period of C4 (Pons, Panel (C)). The inverse effect (increasing expiration time and decreasing 
inspiration time while keeping the period of breathing constant) can be achieved by increasing the period of C1 
(NTS, Panel (A)). This figure also shows that there is some variability in the timing of the bursting signals and 
that this variability increases when the periods of C1 and C4 increase. We used the following parameters to 
generate the figure. For X1 and X3, =k 400, =N 2, =m 100. For X4, =k 800, =N 3. When it is not varied the 
period of =C 51 , the period of =C 1103  and the period of =C 324 .
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Discussion
We have developed a new framework for studying neural networks based on Boolean representation in which the 
nodes could have only two values: “1” (signifying an action potential) or “0”. Our main motivation was to find 
a network architecture that mimics the respiratory neural network and enables selective control of inspiration 
and expiration times. Such selective control of timings is clearly present in humans. For example, in experiments 
designed to investigate how breathing affects heart rate and blood pressure31–35, subjects were asked to breathe in 
a paced frequency with a given inspiration and expiration times. While these experiments were not designed to 
study the respiratory neural network, they demonstrate what the network can do. Taken together, these experi-
ments illustrate the diverse ability of the respiratory neural system to operate at different breathing frequencies 
with different ratios of inspiration to expiration times. Importantly, these experiments also justify the type of 
model we present in this paper. Unlike previous models, which were based on differential equations, our model 
can be easily scaled to represent breathing rates of different species. This can be done by choosing different time 
intervals between consecutive steps. The Boolean trajectory generated as an output of our model can then be 
transformed into an analog signal and coupled to models of other organs such as the lungs or the heart36. Hence, 
the Boolean framework we propose could be used on its own or as part of an integrated model, significantly 
enhancing our understanding of pattern generation and control of breathing rhythm. This could lead to strategic 
improvements in the treatment of cardio-respiratory diseases37 and to advances in our understanding of abnor-
mal oscillations in the neural system.

The states in the Boolean networks we propose change according to a set of Rules. These Rules can be related 
to the operation of neurons. Rules (a) and (b) incorporate the property of a threshold for generating an action 
potential in neurons. Rule (c) incorporates a property of inhibition in which activation is blocked38–40. The prop-
erty of summation of inhibition and excitation signals, in which these signals effectively cancel each other if they 
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Figure 5. Controlling inspiration and expiration times within the 2-phase pattern. Increasing the period of C1 
(NTS, Panel (A)) results in increasing expiration time (number of “0”) and decreasing inspiration time (number 
of “1”s) while keeping the period of breathing constant on average. Increasing the period of C3 (RTN, Panel (B)) 
increases the inspiration time (number of “1”s). The period of bursting is not shown in Panel (B) - its value 
increases as the period of C3 increases with the same increasing tendency as the inspiration time. The 
parameters used to generate this figure are as follows: for X1 and = = =X k N m, 400, 2, 1003 ; for 

= =X k N, 800, 34 , and the period of =C 10004 . In panel (A) the period of =C 1103 . In panel (B) the period 
of =C 51 .
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arrive within a certain window of time, is taken into account indirectly in our model. Such summation, within our 
Boolean framework, can be replaced by an equivalent excitation signal with a lower spiking frequency. This can 
explain some of the differences between the structure we suggest for the respiratory neural network and the struc-
ture previously suggested by others6,18, specifically, the lack of inhibition to X3 (aug-E) in our model does not 
necessarily contradict the role of inhibition shown by other studies40. The same argument could explain why X2 
(early-I) was not essential in our model but was essential in other models18.

While certain aspects of our model could be shown to be equivalent to previous models, the output of our 
larger network differs significantly from the outputs of previous models. For example, in the study of Rubin et al.18 
changes to the drives of pre-I, aug-E and post-I (the equivalent of C1, C3 and C4 in our model) yield simultaneous 
changes in TI, TE and T  (inspiration time, expiration time and breathing frequency, respectively), hence it is not 
clear how inspiration and expiration times can be controlled selectively. In contrast, our model shows several 

0

0.5

1

4000 4500 5000 5500 6000 6500 7000
-1

0

1

4000 4500 5000 5500 6000 6500 7000
Step

0

0.5

1

X4

X3

X1

0 00 5 00 6 0 700

I I I I I I I I I

4000 4500 5000 5500 6000 6500 7000

0

0.5

1

-1

0

1

4000 4500 5000 5500 6000 6500 7000
Step

0

0.5

1

X4

X3

X1

000

I

450 00 5500 6 0 6500 70

I I I I I I I I

A

B

Figure 6. Other types of breathing patterns predicted by the model. Panel (A) shows periodic breathing - a 
dynamic change in inspiration time (marked by I) caused by an increase in the periods of C1, C3 and C4 (decrease 
in the spiking frequency of NTS, RTN and the Pons respectively). As a result, X3 (Aug-E) is silent and X4 
(Post-I) is bursting. X1 (Pre-I) would have been bursting had it been in isolation. In Panel (B), the periodic 
breathing is suppressed by increasing the spiking frequency of NTS (decreasing the period of C1). This leads to 
another way by which a 2-phase pattern can be achieved. We used the following parameters to generate this 
figure. For X1 and X3, =k 400, =N 2, =m 100. For X4, =k 800, =N 3. The period of =C 5003  and the period 
of =C 3504 . The period of =C 1101  in Panel (A) and the period of =C 501  in Panel (B).
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cases in which inspiration time, expiration time or the period of breathing can be kept almost constant while 
changing one of the control variables (Figs 4 and 5 and Panel D, Fig. 1). Of these, two cases (Panel B, Fig. 4 and 
Panel D, Fig. 1) agree with experimental observations. We are not aware of direct experimental observations for 
the other cases shown in Figs 4 and 5. However, we note that when inspiration time is longer, the amplitude of 
breathing is larger. With this in mind, indirect evidence for the scenario described in Panel C, Fig. 4, does exist 
(i.e. increase in breathing amplitude while breathing frequency remains constant)41.

Another difference between the output of our model and the output of the model proposed in the study of 
Rubin et al.18 is that the rate of spikes within a burst changes in the model proposed by Rubin et al.18 but stays 
mostly constant in our model (there is only one example in Fig. 1, Panel D, where the active phase of the bursting 
consists of period 1 spiking followed by period 2 spiking when p = m + 1, see Theorem 5, c). We did not try to 
model changes in network activity within a burst although our framework allows for such modeling. This is left 
for future investigations.

The structure of the network we present is not unique. It is the simplest representation we found that can pro-
vide selective control of inspiration and expiration. Previous studies have demonstrated that sub-network X1 
(Pre-I) has the property of self-excitation8. It has also been demonstrated that neurons in the brainstem have 
diverse bursting properties5. For this reason, we chose sub-network X4 (post-I) to be different from sub-network 
X1. We chose sub-network X3 (aug-E) to be the same as sub-network X1 because we wanted to be able to change 
the expiration time without changing the inspiration time. Replacing sub-network X4 (post-I) by a network of 
similar type to X1 (Pre-I) and X3 (aug-E) generates the same results for the 3-phase and 2-phase states as long as 
X4 has a tonic spiking state and a quiescent state with an activation time longer than X1 (see Fig. 7). A different 
behaviour could exist in the 2-phase scenario shown in Fig. 6, Panel B (in which X3 is silent and X4 is active). If we 
were to plot a bifurcation diagram for this scenario (a task we leave for future investigation), we expect it to differ 
depending on the properties of X4 (however, we note that when =N 3 and m is large enough, the networks 
described in Fig. 1, Panels A and B have similar properties, see Section 2.3 in the Supplementary Material).

In addition to the predictions and insights highlighted so far in the Discussion, our model shows a transition 
from 3- to 2- to 1- phase pattern that is consistent with energy reduction (Fig. 3). The model also predicts which 
control inputs can move the larger neural network into tonic spiking or silence (see Transitions between states in 
the larger network). An interesting prediction of our model is the increase in inspiration time while expiration 
time remains constant when the period of C3 is increased (frequency of RTN is decreased, Panel B, Fig. 5) which 
is the reverse effect of that seen in the 3-phase pattern. We suggested an experiment to test this prediction (see 
Controlling inspiration and expiration times). Our model explains some of the inherent noise observed in the 
neural system (due to the order in which spikes arrive as inputs through the control signals) and predicts when 
the variability increases or remains unchanged (Figs 4 and 5, see also Controlling inspiration and expiration 
times). Furthermore, our model predicts conditions that lead to dynamic changes in inspiration time (Fig. 6, 
Panel A) and suggests a way to suppress it (Fig. 6, Panel B, see also Other types of patterns).

Our results illustrate the potential of using the Boolean framework for studying neural networks. Importantly, 
unlike traditional models, they provide general results that are determined by properties of neurons and not by 
the exact values of these properties. This uniquely enables us to capture the logic behind the multiple operational 
states of neural networks and the formation of distinct breathing patterns. Our network mimics many features 
seen in the respiratory network. It provides novel insights and new testable predictions. This does not exclude the 
development of more complicated Boolean models in the future if it is found that additional complexity is needed. 
We have assigned certain areas of the brainstem to each of the control signals C1, C3 and C4. This particular physi-

Figure 7. Mechanism of the 3-phase pattern generation. X3 is in a bursting state due to the period of C3. While 
it is active both X1 and X4 are inactive. When X3 turns itself down (due to its bursting state), both X1 and X4 can 
be activated by their control signals C1 and C4 respectively. Due to the lower threshold of X1 and the higher 
frequency of its control signal, X1 is activated first. When X4 is activated, it terminates X1. When X3 becomes 
active again (due to its bursting state), X4 is terminated.
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ological interpretation seems to be consistent with current experiments but could change when other evidence 
becomes available.

Methods
Our study is based on logical arguments that we describe below and in the Supplementary Material. All of our 
results can be explained without computers but we provide graphs and numerical simulations for illustration. 
These were done using programs we wrote in Matlab and R (available at https://github.com/YunjiaoWang8/
Logic-Behind-Breathing-Patterns).

We use the standard convention to graphically represent a Boolean network. The network consists of nodes 
that can have only two values, “1” or “0” (called the state of the node), and arrows that are either excitatory 
(denoted by →) or inhibitory (denoted by ). Throughout this paper, nodes that are marked with Xi (where i is a 
positive integer) represent the output of a neuron and nodes that are marked with I j

i and Sj
i (where i and j are 

positive integers) represent internal processes associated with neuron Xi. For simplicity, we omit the superscript 
when it is clear which neurons the nodes Ij and Sj are associated with. We also distinguish between two types of 
external inputs: node E which is always “1” and always excitatory, and node Ci (where i is a positive integer), 
which is a control input.

The state of the node Xi in the current step is given by its value and we denote the state of Xi at the next step as 
+Xi . Similar notation is used for all the other nodes. As the steps progress forward, we get a sequence of states for 

each node (called a trajectory). These trajectories can have certain characteristics as described in the first section 
of the Results. In this paper we limit the trajectory of node Ci to being periodic tonic spiking. Lemma 1 shows how 
periodic tonic spiking can be produced by a Boolean network, effectively showing how to transform a nonauton-
omous network to an autonomous network.

Following a proof of Lemma 1 we give a formal definition of bursting and mixed mode oscillations and explain 
what we mean by steady state. We then provide more information about the dynamics of the networks shown in 
Fig. 1. Other types of networks and their dynamics are described in the Supplementary Material. In every network 
we introduce in this section the control signal C1 is an input to the network and the output is the state of the node 
X1. In all of the networks, the governing functions follow the Rules introduced in the first section of the Results. 
We assume that the symbols k m p r, , ,  and N  are all positive integers.

Tonic spiking network. Lemma 1 For any given periodic signal =C (10 0)1  with −p 1 consecutive “0”s follow-
ing a state of “1”, there exists a Boolean network that can generate the signal.

Proof. We prove the lemma by constructing networks that generate the signals. First we show that the networks in 
Fig. 8(a,b) generate the signals (10) and (100) respectively. In all the networks we construct in this proof, we 
assume that the threshold N to activate each node is one. By the Rules, the truth table for the network in Fig. 8(a) 
is shown in Table 1.

This implies that =C (10)1  (period 2). We look next at the truth table for the network in Fig. 8(b), Table 2.

As can be seen we get the trajectory = → → →S S( , ) (1, 0) (0, 1) (0, 0) (1, 0)1 2  which gives =C (100)1  (period 3).

S1 C1E

(a)

S1 C1

S2

E

(b)

S1 C1

S2S3

E

(c)

Figure 8. Creating a periodic signal: (a) =C (10)1  (period 2); (b) =C (100)1  (period 3); (c) =C (1000)1  (period 4).

S C( , )1 1
+ +S C( , )1 1

⁎(0, ) (1, 0)

⁎(1, ) (0, 1)

Table 1. Truth table of the network in Fig. 8(a), where * means the value is either 0 or 1.

https://doi.org/10.1038/s41598-019-45011-7


1 1Scientific RepoRts |          (2019) 9:9078  | https://doi.org/10.1038/s41598-019-45011-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

We now assume that a network which generates a signal of period p exists and that it has the nodes ··· −S S, , p1 1. 
We can always add another node, Sp that is excited by −Sp 1 and inhibits S1, thereby creating a signal with period 

+p 1 (see Fig. 8(c) as an example). 

Bursting, mixed mode oscillations and steady state. Definition 2 Let a trajectory consist of a repeated pattern 
of period +m n where the first m steps of the pattern are composed of consecutive “1”s and “0”s that start and end 
with “1”, followed by n consecutive “0”s. Let max(0)m be the maximum number of consecutive “0”s within the first m 
steps of the pattern. Then, a trajectory exhibits bursting if:

 1. the trajectory is not periodic with period p, i.e. the pattern is not �� ��� ��� �� ��� ���











10 0 10 0

p p

;

 2. >n max (0)m, in other words, there are more consecutive zeros in the last n steps of the pattern than there are 
in the first m steps.

If ≤n max (0)m and the trajectory is not periodic with a period p then we say that the trajectory has mixed mode 
oscillations.

We note that a trajectory of an autonomous and deterministic Boolean network with a finite number of nodes 
will eventually repeat a certain pattern. This is because a network with a finite number of nodes has a finite num-
ber of states, hence, the trajectory will eventually come back to one of the states it has visited before. By Lemma 1, 
our network models are equivalent to deterministic and autonomous systems. Hence, all trajectories will eventu-
ally repeat some pattern. We say that a trajectory is in steady state if it consists of a repeated pattern.

excitatory network. Consider the network shown in Fig. 1, panel A, where the node X1 is activated by the 
nodes ···S S S, , , k1 2 . The integer k is a parameter that can be considered an internal property of the network, rep-
resenting a memory length. The threshold for excitation of the nodes Si (where ···∈i k{1, , }) is one but the 
threshold, N, of X1 could change (this is another internal property of the network representing how excitable a 
neuron is; low values of N indicate higher excitability). Theorem 3 characterizes the dynamics of networks with 
such topology.

Let ···=K k{1, , }, then the governing functions of the nodes in Fig. 1(A) when =N 2 are:

=

=

= ∨ ∧

+

+
+

+

∈ ≠

S C
S S

X S S( )
(1)

i i

i j K i j
i j

1 1

1

1
, ,

Theorem 3 Let the network in Fig. 1, Panel A, be governed by the Rules with =C (10 0)1  being a periodic signal of 
period p. Then

 1. when ≤p k
N

, =X (1)1  at steady state;

 2. when < <
−

pk
N

k
N 1

, ��� �=










−

X 1 1 0 0
s p s

1
 at steady state, where = − −s k N p( 1) ;

 3. when ≥
−

p k
N 1

, X1 is silent at steady state.

Remark. In the remaining of this paper, suppose Ci has a period of p, then we can always assume that at steady 
state, if =S 1i , then ···= = =+ + + −S S S0, 0, , 0i i i p1 2 1  and =+S 1i p . i.e. “1” only shows up once every p nodes. 
This is because after the initial transient response which depends on initial conditions, the nodes S{ }i  will follow 
the input signal C1 which is periodic with period p.

Proof.
 1. When ≤p k

N
, i.e. ≤Np k, there are at least N number of Si having state value “1” at any time step after the 

initial k time steps. Hence, X1 has at lease N activators being “1” at any time step greater than k. By the 

S S C( , , )1 2 1
+ + +S S C( , , )1 2 1

⁎(0, 0, ) (1, 0, 0)

⁎(1, 0, ) (0, 1, 1)

⁎(0, 1, ) (0, 0, 0)

⁎(1, 1, ) (0, 1, 1)

Table 2. Truth table of the network in Fig. 8(b), where * means the value is either 0 or 1.
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Rules (a), =X (1)1  at steady state.
 2. When < <

−
pk

N
k

N 1
, i.e. − < <N p k Np( 1) , without loss of generality, we can assume that at Step 0,

�� �� ��� ���
� ��� ���

�=












−

−

S S( ) 10 0 10 0
(2)

k
p

N

s
1

1

1

where �� ��� ���
� ��� ���−

10 0
p

N 1

 means �� ��� ���10 0
p

 repeats −N( 1) times and = − −s k N p( 1) . Note that in this case, there are N 

number of “1”s in the values of S S( )k1 . The number of “1”s will remain N until s time steps have passed, at 
this point

�� � �� ��� ���
� ��� ���

=












−

S S( ) 0 0 10 0
(3)

k
s p

N

1

1

Note that now there are −N 1 number of “1”s in the sequence S S( )k1 . The number of “1”s will remain 
−N 1 until −p s time steps have passed, after this step the state values of S S( )k1  will change back to the 

initial state shown in Eq. (2). This pattern of changing from Eqs (2) to (3) and back to Eq. (2) repeats every 
p time steps. Over one period (i.e. p time steps), there are s time steps at which N number of Si have state 
value “1” and at the remaining −p s steps, only −N 1 number of Si have state value “1”. Hence, 

��� �=










−

X 1 1 0 0
s p s

1
 at steady-state.

 3. When ≥
−

p k
N 1

, i.e. − ≥N p k( 1) , at any time step, there are at most −N 1 number of Si having state 
value “1”. Hence, X1 will never get activated. That is, X1 is silent at steady state. 

Theorem 3 is illustrated by the diagram in Fig. 1, Panel C. It shows that in the excitatory network periodic 
trajectories of period one persist for a range of control signals C1. Furthermore, it shows a sudden transition in the 
trajectory of X1 from periodic to bursting when p (the period of the control signal C1) changes from =p k

N
 to 

= +p 1k
N

. As the period of C1 increases further, the number of consecutive ones within one burst decreases until 
we get a periodic trajectory with period −

−
1k

N 1
 when = −

−
p 1k

N 1
. For values of p greater than 

= −
−

p 1k
N 1

, silence persists. This network provides qualitatively the three types of signals seen in the PreBötC 
(where tonic spiking, bursting and quiescent signals exist). However, the range over which bursting is seen is 
highly dependent on k which is a limiting feature. Furthermore, if the threshold N  is one, the network cannot be 
silenced and if N  is greater than 2 the range over which bursting is seen is reduced to < < −k N p k N/ /( 1).

excitatory network with memory loss and self-excitation. Let the Boolean system associated with 
the network in Fig. 1, panel B, with =N 2 be:

=

= < ≤
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1 1

1

1 1

1
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1

1 1

where ···=K k{1, , }.

Remark 4 In Theorem 5, the results about steady states of System (4) are presented for the initial condition

�� � �=











= = .

−

S S X and I( ) 10 010 0 , 0 0k
p

1
1

1 1

which we call the feasible state. However, the results in Theorem 5 hold for other initial states for most combinations 
of the constants m and k as shown in Lemmas 6–8. Therefore, the results in Theorem 5 are rather general even though 
we fix the initial condition.

Theorem 5 For system (4), suppose the signal =C (10 0)1  is periodic with period p and ≥m 3 and suppose the 
initial state is the feasible state
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= = .
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S S X and I( ) 10 010 0 , 0 0k
p

1
1

1 1

Then

 (a) when ≤p m, =X (1)1  at steady state;
 (b) when = +p m 1 and p is even, =X (10)1  at steady state;

 (c) when = +p m 1 and p is odd, ��� �� ���� ���� �=










+ +

X 1 1 0101 01 0 0
m m m

1
1 2

 at steady state;

 (d) when + ≤ < −m p k2 1, ��� �=










−

X 1 1 0 0
m p m

1
2

 at steady state;

 (e) when + ≤ = −m p k2 1, � �� ������ ������=











X 1010 10 0

p
1

2

 at steady state, where alternation between 1 and 0 occurs 

for a consecutive m steps if m is even or +m 1 if m is odd for every p2  steps.
 (f) when ≥p k, then X1 is silent at steady state.

Proof.
 (a) When ≤p m, by the Rules,

�� � �=
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−

S S X I( ) 010 010 0 , 1 and 0k
p

1
1

1 1

at Step 1 and at Step 2,
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−

S S X I( ) 0010 0 , 1 and 1k
p

1
1

1 1

Since ≤p m, there is at least one of Si with a value of “1” at any step after this. It follows that 
=X I( , ) (1, 1)1 1  for all the next steps as well. Hence, =X (1)1 .

 (b) When = +p m 1 and p is even, by the Rules,

�� � �=











= =

−

S S X I( ) 010 010 0 , 1 and 0,k
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at Step 1 and at Step 2,
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The number of Si with a value of “1” remains one and the values of X1 and I1 also remain “1” until Step 
− =p m1  where
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p
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It follows that at Step = +p m 1,
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and at Step + = +p m1 2
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The values of X1 and I1 alternate between “0” and “1” at least up to Step −p2 1. Because p is even,

https://doi.org/10.1038/s41598-019-45011-7


1 4Scientific RepoRts |          (2019) 9:9078  | https://doi.org/10.1038/s41598-019-45011-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

�� � �=











= =

−

S S X I( ) 0 010 , 1 and 0k
p

1
1

1 1

at Step −p2 1. Then at Step 2p,
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which is the same value as the state value at Step p. Since C1 is periodic of a period p, the pattern of the 
activity states from Step p to p2  repeat every p steps. Hence, =X (10)1  at steady state.

 (c) When = +p m 1 and p is odd, by the Rules,
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The values of X1 and I1 alternate between “0” and “1” for all steps between +p 1 and −p2 2. Because p is 
odd, the number of steps between Step +p 1 (inclusive) and Step −p2 2, is an odd number ( −p 2 steps).
At Step −p2 2,

�� � �=











= = .

−

S S X I( ) 0 010 , 1 and 0k
p

1
2

1 1

It follows that at Step −p2 1,

�� � �=











= = .

−

S S X I( ) 0 000 , 0 and 1k
p

1
1

1 1

Then at Step 2p,

�� � �=











= = .

−

S S X I( ) 10 000 , 0 and 0k
p

1
1

1 1

The number of Si with a value “1” remains one and the values of X1 and I1 remain “0” until Step p3 , at which
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�� � �=











= =

−

S S X I( ) 10 010 , 0 and 0,k
p

1
1

1 1

which is the same as the feasible state. Since C1 is periodic with period p, the states from Step 0 to p3  repeat 

every = +p m3 3 3 steps. Hence, ��� �� ���� ���� �=










+ +

X 1 1 0101 01 0 0
m m m

1
1 2

 at steady state.

 (d) When + ≤ < −m p k2 1, by the Rules,

�� � �=











= =

−

S S X I( ) 010 010 0 , 1 and 0k
p

1
1

1 1

at Step 1,

�� � �=











= =

−

S S X I( ) 0010 0 , 1 and 1k
p

1
1

1 1

at Step 2. The number of Si with a value of “1” remains one and the values of X1 and I1 remain “1” until Step 
≤ −m p 2 at which

 = = = .S S X I( ) (0 0), 1 and 1k1 1 1

It follows that at Step + ≤ −m p1 1,

 = = = .S S X I( ) (0 0), 0 and 1k1 1 1

At Step + ≤m p2 , =I 01 , =X 01  and the number of Si with a value of “1” is at most one. The values of X1 
and I1 remain “0” up to Step p2  at which

�� � �=











= = .

−

S S X I( ) 10 010 0 , 0 and 0k
p

1
1

1 1

That is, the state value is the same as the initial value. Since the period of C1 is p, the pattern of states repeat 

every p2  steps. Hence at steady state, ��� �=










−

X 1 1 0 0
m p m

1
2

.

 (e) When + ≤ = −m p k2 1, by the Rules, at Step 1,

�� �=











= = .

−

S S X I( ) 010 0 , 1 and 0k
p

1
1

1 1

At Step 2,

�� �=











= = .

−

S S X I( ) 0010 0 , 0 and 1k
p

1
2

1 1

Up to Step m if m is even, and up to Step +m 1 if m is odd, the number of “1”s in the sequence S S( )k1  
remains one and the values of X1 and I1 alternate between “1” and “0”. From Step +m 2 (≤p) to Step −k 1 
all Si have a value of “0” and the values of X1 and I1 are “0”. The values of X1 and I1 remain “0” until Step p2 , 
at which the state goes back to the initial state. The pattern of activity repeats every p2  steps. Hence, 

� �� ������ ������=











X 1010 010 0

p
1

2

 at steady state, where alternation between 1 and 0 occurs for m steps if m is even or 

+m 1 steps  if m is odd for every p2  steps.
 (f) When ≥p k, with the feasible initial condition, the number of Si with a value “1” is at most one. That 

is, X1 has at most one activator at any time step. Hence, by the Rules =X (0)1 . 

Lemma 6 For system (4), suppose the signal =C (10 0)1  is periodic of period p with + < ≤ −m p k1 1, then all 
the trajectories pass through the state
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�� � �=











= =

−

S S X I( ) 10 010 0 , 0 and 0k
p

1
1

1 1

Proof. When + < ≤ −m p k1 1, we first note that X1 cannot be always zero at steady state. We can see this by 
contradiction. Suppose =X 01  at steady state, then at least two Si have a value of “1” every p2  steps since 

≤ −p k 1. This means X1 will be activated every p2  time steps, which is a contradiction.
We also note that X1 cannot be always “1” at steady state. Again, we show this by contradiction. Suppose 
=X 11  at steady state, then =S 0i  for all ≥ +i m 1. Since ≥ +p m 2, there exist at least two steps in every con-

secutive p steps at which all =S 0i . It follows that =X 01  every p steps, which is a contradiction.
Next we show that a steady state cannot be (10). Suppose =X (10)1 . Then at any step, =S 0i  for all ≥ +i m 2. 

Since > +p m 1, there is at most one Si having value “1” for ≤i m at any given step. Moreover, S S( )k1  cannot 
be all zeros for two consecutive steps, otherwise, X1 will be zero for two consecutive steps which is a 
contradiction.

Without loss of generality, we assume that at Step 0 the values of the signals are

� �� ��� ���=








+S S( ) 0 0100m

m
1 2

Observe that the case = =X I 11 1  is not admissible. Otherwise S S( )k1  would all have values equal zero in the 
next step,

leading to X1 being “0” for two consecutive steps, which is a contradiction. Hence the values of I1 and X1 can 
only be: (case 1) =X 11  and =I 01 , and (case 2) =X 01  and =I 11 .

Next we discuss case by case.

Case 1. At Step 1,

� �� ��� ���=










= =+S S X I( ) 0 0000 , 0 and 1m
m

1 2 1 1

At Step 2,

� �� ��� ���=










= =+S S X I( ) 0 0000 , 0 and 0m
m

1 2 1 1

There are two consecutive “0”s in the trajectory of X1, which is a contradiction.

Case 2. At Step 1,

� �� ��� ���=










= =+S S X I( ) 0 0010 , 1 and 0m
m

1 2 1 1

At Step 2,

� �� ��� ���=










= =+S S X I( ) 0 0000 , 0 and 1m
m

1 2 1 1

At Step 3,

� �� ��� ���=










= =+S S X I( ) 0 0000 , 0 and 0m
m

1 2 1 1

There are two consecutive “0”s in the trajectory of X1, which is a contradiction. Hence, the trajectory of X1 at 
steady state contains consecutive zeros. More specifically, the trajectory of X1 contains the sequence 100.

Without loss of generality, suppose that =X 1, 0, 01  at Steps 0, 1 and 2 respectively. Because X1 inhibits all Si for 
>i m, there exists at most one Si with ≤i m having a value of “1” and =S 0i  for >i m at Step 1. Then at Step 2, 
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there is at most one of Si having value “1” while =I 01 . Because the threshold for activating X1 is 2, X1 will remain 
“0” up to the step at which

�� � �=











= =

−

S S X I( ) 10 010 0 , 0 and 0k
p

1
1

1 1

The lemma is then proved. 

Lemma 7 When <p m, the steady state =X (1)1  found in Theorem 5 is the only steady state of System (4) for any 
initial condition.

Proof. We prove the lemma first by showing the result for the case ≤ −p m 2 and then for the case = −p m 1.

When ≤ −p m 2, i.e., + ≤p m2 , 
 +S S( )p1 2  is determined only by the periodic control signal C1.

For any given trajectory at steady state, there must exist a step at which

� �� ��� ���=











+S S( ) 10 010p

p
1 2

where there are at least two “1”s in the sequence S S( )k1 . For convenience, we assume this occurs at Step 0. 
Because the threshold of X1 is 2, =X 11  at Step 1 and

� �� ��� ���=











+S S( ) 010 01p

p
1 2

At Step 2, =X 11  and =I 11 . Since + ≤p m2 , at any following steps, there is at least one Si with ≤ ≤i m1  hav-
ing a value of “1”, and X1 and I1 remain “1”. Hence, =X (1)1  at steady state.

Next, consider = −p m 1. All trajectories at steady state must pass through the state characterized by

� �� ��� ���=











+S S( ) 10 01p

p
1 1

and the value of X1 can be either “1” or “0”. Without loss of generality, we assume it occurs at Step 0.

Suppose =X 11 . Then at Step 1,

� �� ��� ���=











+S S( ) 010 00p

p
1 1

and =X I( , ) (1, 1)1 1 . Since = −p m 1, at steady state, there is at least one Si having a value of “1”, and both X1 and 
I1 remain “1” for all the steps afterward. Hence, =X (1)1  at steady state.

Suppose =X 01 , then at Step 1,

� �� ��� ���=











+S S( ) 010 01p

p
1 2

and =X 11 . At Step 2, =X I( , ) (1, 1)1 1 . Again there is at least one Si having a value of “1”, and both X1 and I1 
remain “1” for all the steps afterward. Hence, =X (1)1  at steady state. 

Lemma 8 For System (4), when > +p k 1, =X (0)1  for any initial condition.

Proof. When > +p k 1 there are at least two consecutive steps every p steps at which all Si nodes have a value of 
“0”. This will result in X1 and I1 being “0” at the same step. Moreover, there is at most one of Si having a value of “1” 
at any step at steady state because of > +p k 1. Hence, without a loss of generality, we can assume that at Step 0,

 = = =S S X I( ) (10 0) and 0, 0k1 1 1

https://doi.org/10.1038/s41598-019-45011-7


1 8Scientific RepoRts |          (2019) 9:9078  | https://doi.org/10.1038/s41598-019-45011-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

By the Rules, X1 has at most one activator having a value of “1” at any step that follows. Hence, X1 cannot be reac-
tivated and =X (0)1 . 

The results of Theorem 5 are illustrated in Fig. 1, panel D.

Data Availability
All data is available in the main text or the Supplementary Material. The codes used to perform the numerical 
simulations are available at https://github.com/YunjiaoWang8/Logic-Behind-Breathing-Patterns.
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