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A Parametric Study of Frictional Load 
Influence in Spur Gear Bending Resistance 
 
A revised Lewis bending fatigue stress capacity model for spur gears is presented 
and used to study the influence of mesh friction on root stress. It took the original 
Lewis formula and made modifications for dynamic loads, shear stress, and mesh 
friction in spur gear design. The study reveals that mesh friction may increase 
bending stress by up to 6% in enclosed cylindrical gear drives when an average 
mesh friction coefficient of 0.07 is assumed. A possible increase of 15% in root 
stress may occur in open gear drives when the mesh friction coefficient is taken as 
0.15, a value considered to be representative for properly maintained open drives. 
To account for mesh frictional load and other factors directly influencing mesh 
friction, a friction load factor of 1.1 is suggested and introduced to gear service 
load estimation for enclosed gear drives and 1.15 for open gear drives. 
 
Keywords: Lewis form factor, Mesh friction factor, Root bending stress 

 
 

1. INTRODUCTION 
 

A gear is a toothed disk used to transmit power and 
motion when mounted on a rotating shaft. In most 
applications, the gear is made separate from the shaft 
but could be made integral with it, especially when the 
gear is small in size. Spur gears have tooth profile 
projecting radially with the gear width parallel to the 
axis of the shaft and they have been used since ancient 
times [1].   

The resistance of gear teeth to failure in bending is 
called beam strength and gear failure in bending fatigue 
is a common problem [2, 3, 4]. Fatigue failure is due to 
crack formation and propagation induced by repeated 
loading. A crack normally initiates at a discontinuity 
where there is a cyclic maximum stress [5, 6]. Cracks 
grow along planes normal to the maximum tensile stress 
[5] and when the growth becomes unstable, brittle 
fracture rapidly follows. Through hardened gears most 
often fail in bending fatigue due to a crack initiated at 
the surface in the root area. Because the surface 
hardness of case-hardened gears is higher than the core 
value, the bending fatigue strength of the gear root 
surface can be higher than that of the core. Therefore, 
bending fatigue failure may occur at the transition zone 
between case-hardness and core-hardness if the induced 
stress at the junction is more than the available core 
fatigue strength [7]. In fact, case-hardened gears 
generally fail in fatigue at the boundary of case-core 
hardness, except when there is sharp stress raiser at the 
surface [8]. 

In 1892, Lewis modeled a gear tooth in bending as a 
short cantilever beam on a rigid base with the 
transmitted load applied near the tip of the gear tooth [5, 
6]. The maximum tensile stress occurs at the root radius 

on the loaded or active side of the gear tooth. Due to 
repeated loading of a gear tooth, this region becomes the 
preferential site for the initiation of fatigue crack. This 
beam model still serves as the basis for gear bending 
fatigue design today. Consequently, various gear 
bending capacity standards, such as those of the 
International Standardization Organization (ISO), 
American Gear Manufacturers Association (AGMA), 
and Japanese Industrial Standards (JIS) are 
modifications of the Lewis formula.  

Mesh friction is the friction occurring in the contact 
zone between the teeth of a gearset in a mesh.  AGMA 
gear standards recognize the fact that gear surface finish 
may affect the quality of contact. Surface finish in gears 
may be influenced by cutting, shaving, lapping, 
grinding, and shot-peening, etc. [7, 9]. In AGMA 
model, a surface finish factor may be assumed and 
given a value of unity for gears made with conventional 
methods but can be given a value above unity for 
unusually rough surface finish or for known presence of 
detrimental residual stresses [7]. However, this factor is 
not directly linked with friction.  

Gear mesh friction is complicated with contributions 
from sliding and rolling. However, rolling motion occurs 
only in the vicinity of the pitch point, while mixed sliding 
and rolling motions occur elsewhere. Higher peripheral 
speed facilitates the formation of an oil wedge in the 
contact area, resulting in lower fric-tional losses [10]. For 
enclosed gear drives, mesh friction is in the range of 0.04 
to 0.10 [8, 9, 10, 11, 12] and Maitra [11] suggests an 
average value of 0.07. Open gear drives operate in much 
harsher environments than enclosed gear drives and 
lubrication is not as good or effective as in enclosed 
gears. Higher friction is therefore expected, since they 
operate mostly in boundary to dry friction regimes. For 
instance, the coefficient of friction in boundary 
lubrication is in the range of 0.05 to 0.15 [9]. Friction is a 
poorly behaved phenomenon, being influenced by many 
factors; including surface finish, wear resistance, 
temperature, humidity, contamination, lubricant, and 
sliding speed. Because of stick-slip behavior and wide 
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variation in friction coefficient values, frictional behavior 
is very unpredictable [13, 14]. Mesh friction has the 
detrimental effect of promoting the formation of cyclic 
tensile stress component in the contact zone which 
enhances fatigue crack propagation [15] and also 
reducing power transmission efficiency.  

Li and Mao [16] developed a numerical method for 
the study of the influence of mesh friction on the contact 
force, bending stress, and transmission error in spur 
gears. They concluded that frictional force should not be 
ignored in gearing because it increases the bending stress 
and transmission error. Increased transmission error 
generally translates into increased vibrations and noise 
which can further increase the contact force. Eng et al 
[17] investigated frictional stress analysis of spur gears 
with misalignments using finite element method. The 
mesh friction coefficient was varied from 0.1 to 0.3 in 
values while the contact and bending stresses were 
estimated. They found that the contact stress increased by 
5 to 6% while the bending stress increased by 4.6% for a 
mesh friction value of 0.3. Thus there appears to be no 
analytical solution method or model for the influence of 
frictional load on spur gear bending stress. Generally, 
analytical solutions are faster and less costly to 
implement programmatically in software development.  

This study investigates the influence of mesh friction 
on the bending stress of spur gears parametrically. The 
influence is explored by decomposing the frictional load 
into tangential and radial frictional load components. It is 
demonstrated that mesh friction slightly increases the 
effect of the nominal transmitted load, thus resulting in 
higher bending stresses than expected when mesh friction 
is ignored. Specifically, it is shown that the tangential 
frictional load contributes more than the radial frictional 
load in the increase in bending stress. Consequently, it 
may be justified to always account for the increase in 
bending stress due to mesh friction. Hence, it is suggested 
that a frictional load factor component may be included in 
the service load factor estimate in spur gear design in 
particular, and in gear design in general. 
 
2. MESH FRICTIONAL LOAD COMPONENTS 

 
The torque and tangential force loads on a gear tooth are: 

3
1

1
1
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×
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Equation (1) has two entries and should be inter-
preted as Eq. (1a) and Eq. (1b) from left to right. The 
same rule should be applied to other equations of si-
milar nature.  

The radial and normal forces on spur gears are given 
in Eq. (2). 
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The gear tip contact angle at the beginning of 
meshing is given in Eq. (3).  
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In Fig. 1, we consider a spur gear that is loaded in 
bending by a force at the tip of the gear tooth. The fric-
tion force nf  results from the presence of mesh friction 
and is assumed to act at the contact angle shown. This 
will be the point where the relative sliding velocity is 
highest at the beginning of a mesh. The exit point at the 
dedendum radius is another point of high relative sliding 
velocity. The contact at the tip of the gear occurs at 
point A, but the effective moment arm is determined by 
the projection of point A onto the centerline of the tooth 
profile at point B. Since the contact point moves down-
ward, the friction force would point upward to oppose 
the motion. 

The frictional forces are: 

n m nf Fς=   sint n af f ϕ=   cosr n af f ϕ=   (4) 

The bending force on the gear tooth is: 

 /
t t tF F f= +   /

t t tF Fα=   
sin

1
cos
m a

t
t

ς ϕα
ϕ

= +  (5) 

Eq. (5c) indicates that the presence of friction 
increases the tangential bending load on a gear tooth, 
since tα  is greater than unity. Hence at the tip of the 
gear, the load carried by a pair of meshing gears will be 
more than the nominal transmitted load. The implication 
of this is that the bending moment at the root of the gear 
is slightly increased.  

The compressive force on the gear tooth is: 

/
r r rF F f= −   / tant r t tF Fα ϕ=  

cos
1

sin
m a

r
t

ς ϕα
ϕ

= −   (6) 

Eq. (6c) shows that the radial compressive load is 
reduced by the presence of friction in the mesh, 
since rα is less than unity. Therefore, the beneficial 
effect of the radial load in reducing the tensile stress at 
the gear root is slightly over estimated when friction is 
neglected. From Eqs. (5c) and (6c), it is clear that the 
resultant tensile stress is actually slightly higher in spur 
gear when mesh friction is not ignored. Mesh friction in 
cylindrical gear drives is considered in Appendix A1. 

Fig. 2 to Fig. 7 show the plots of the friction load 
 factors against the gear tip contact angle for 200 
standard tooth profile for spur gears when the mesh 
friction coefficients of 0.02, 0.05, 0.07, 0.10, 0.15 and 
0.20; are assumed respectively. The upper curves in 
these figures show the tangential frictional load factor 
while the lower curves show the radial frictional load 
factor. The tangential frictional load factor is highest for 
small numbers of gear teeth when the tip contact angle 
is largest. The radial friction load factor is lowest for 
high numbers of gear teeth when the tip contact angle is 
smallest. Note that higher values of the tangential 
frictional load factor result in higher root bending 
stresses while lower values of the radial load factor 
result in higher root bending stresses. Therefore, the 
worst load combination would occur at these situations, 
but they are however, mutually exclusive in practice for 
a single gear tooth. Theoretically, they give the limit 
conditions and thus the most conservative in frictional 
load influence in the bending resistance of spur gears.  
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Figs 2 to 5 cover the range of mesh friction 
coefficient for enclosed cylindrical gear drives while 
Figs. 5 to 7 may be considered as representing the range 
for open cylindrical gear drives that are properly 
maintained in operation. Poorly maintained open drives 
are likely to operate in dry friction regime so that higher 
friction coefficients above 0.20 may be expected.  
In Figs. 2 to 7, gears with smaller number of teeth or 
higher tip contact angles experience higher tangential 
frictional load.  

However, gears of smaller number of teeth or higher 
tip contact angles experience lower radial load reduction 
and benefit more from the influence of the radial 
compressive stress is reduced by mesh friction. 
Consequently, gears with lower number of teeth 
experience higher compressive stresses due to the 
presence of friction in a gear mesh. 

 
Fig. 1: Bending forces on spur gear tooth 
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Fig. 2: Frictional load factors for 0.02 coefficient 
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Fig. 3: Frictional load factors for 0.05 coefficient 
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Fig. 4: Frictional load factors for 0.07 coefficient 
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Fig. 5: Frictional load factors for 0.10 coefficient 
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Fig. 6: Frictional load factors for 0.15 coefficient Fig. 7: Frictional load factors for 0.20 coefficient 

 

Table 1 is the summary of Fig. 2 to Fig. 7 in which 
column 1 of the table shows the mesh friction values, 
column 2 shows the tangential friction factor values and 
column 3 shows the radial friction factor values. Due to 
the nebulous nature of friction and high variability of 

friction coefficient values, a conservative approach is 
adopted in populating columns 2 and 3 of Table 1. 
Maximum values of the tangential friction factor values 
were read from Fig. 2 to Fig. 7 while minimum values 
of the radial friction factors were read. However, these 
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values correspond to opposite ends in the plots: the 
tangential friction factor corresponds to low number of 
teeth while the radial friction factor corresponds to 
higher number of teeth in a gear. Such an approach is 
predicated on the very high variability that is associated 
with friction coefficient values. The tangential friction 
factor values in column 2 of Table 1 give the possible 
increase in the tangential force as a result of the mesh 
friction value indicated in column 1. These values 
directly translate to increases in the root bending stress 
of a gear tooth. For instance, a mesh friction coefficient 
of 0.07 leads to a 5% increase in the root bending stress. 
The radial friction factor values in column 3 of Table 1 
give the possible proportion of the radial load that 
produces a compressive stress at the gear tooth root. The 
difference between unity and the values indicated in 
column 3 is the proportion of the radial load that leads 
to further increase in the root bending stress due to the 
friction in the contact mesh. How much that increase is, 
cannot be determined directly from the radial friction 
factor as it is with the tangential friction factor. Further 
study is required therefore, to estimate the numerical 
increases that can result from the radial frictional load 
component. Consequently, the Lewis bending stress 
formula will be used for investigating the contributions 
of the radial frictional load to increases in root bending 
stress because it can be modified to accommodate 
frictional load.   
Table 1: Summary of Mesh Friction Factors 

Mesh Friction 
Coefficient 

Tangential 
Friction Factor 

Radial Friction 
Factor 

0.02 1.02 0.95 
0.05 1.04 0.86 
0.07 1.05 0.80 
0.10 1.07 0.71 
0.15 1.10 0.60 
0.20 1.14 0.45 

 
3. MODIFIED LEWIS BENDING CAPACITY MODEL  
 FOR SPUR GEARS 
 
When load shearing and static load are assumed, the 
Lewis bending stress formula may be expressed as: 

/
t

bt
t t

F

bm Y
σ

ϖ
=   (7) 

Eq. (7) is evaluated separately for the pinion and 
gear in gear design. The pinion is usually more 
vulnerable to bending stress failure, being of a smaller 
root tooth thickness. Eq. (8a) gives the expression for 
the modified Lewis bending stress form factor when the 
radial compressive stress is considered [10, 18] without 
friction in the gear mesh. Thus, if the radial compressive 
force is neglected as assumed by Lewis, the Eq. (8b) is 
obtained. 

1
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t

Y
l m

tt
ϕ ϕ
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=
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/ 1
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a a t

t

Y
l m
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ϕ
ϕ

=
⎛ ⎞ ⎡ ⎤
⎜ ⎟ ⎢ ⎥

⎣ ⎦⎝ ⎠

 (8b) 

It is clear that Eq. (8a) will always give higher 
values compared to Eq. (8b) because of the compressive 
stress considered and the result is a lower bending 
stress. This explains why the value of Y for modern gear 
standards that account for the compressive radial force 
is slightly higher than Y/. Note that Y or Y/ values for the 
pinion and gear can be estimated from a single curve.  

 
3.1 Direct Compressive Stress 
 
The radial force induces a compressive stress which is 
given in Eq. (9a). Eq. (9b) is obtained by combining Eq. 
(7) and Eq. (9a).  

/ tanr t tr
cr

t t

FF
bt bt

α ϕσ
ϖ ϖ

= =  (9a) 

/ tanbt r t t
cr

m Y
t

σ α ϕσ =   (9b) 

The resultant bending stress at the gear root is: 

b bt crσ σ σ= −   (10a) 

/1 tan t
b bt r t

m
Y

t
σ σ α ϕ⎛ ⎞= −⎜ ⎟
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 (10b) 

 
3.2 Direct Shear Stresses 
 
The transverse force also induces direct shear stress on 
the gear which is:  

bt
F

t

t
s ϖ

τ
 

=  
t

mY t
bts

/στ =  (11) 

 
3.3 Equivalent Root Tensile Stress 
 
The equivalent tensile stress at the gear root may be 
based on distortion energy theory or maximum shear 
stress theory depending on whether the material is duc-
tile or brittle [7, 11]. Most gears are made from ductile 
materials, so the equivalent tensile stress at the tooth 
root may be estimated by applying the distortion energy 
theory. For a plane stress situation, the equivalent 
tensile stress based on the distortion energy theory is: 

2 23t b sσ σ τ= +   (12) 

The dedendum circle is generally connected with the 
involute profile of a gear tooth with a fillet. This intro-
duces a geometric discontinuity at the gear root resul-
ting in stress concentration. Stress concentration was not 
known in the days of Lewis; but it is very important 
today because experimental and simulated results 
indicate that it can significantly increase local stresses 
[19]. Therefore, a stress concentration factor should be 
included in the Lewis formula for it to be more realistic. 
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Since there are both normal and shear stresses, Eq. (12) 
may be modified as:   

2 2 2 23t b sk kσ τσ σ τ= +   (13) 

On substituting Eq. (10b) and Eq. (11b) into Eq. (13) 
and simplifying, we get: 

/
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t t

t
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F k k
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=    
/ 3
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2 10
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where: 

2 2/ /
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m Y Y m k
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α ϕ
⎛ ⎞ ⎡ ⎤
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It can be shown that: 

tt m κ=   /6 aYκ λ=   (16) 

Appendix A2 describes a method for estimating 
aλ using the rack tooth profile.  

Substitute Eq. (16a) into Eq. (15) to obtain Eq. (17) 
as: 

2 2/ /
/ 1 tan 3r
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κ κ
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Apparently, the mesh friction can only be estimated 
after a gearset dimensions are established and a 
lubricant is chosen. Please refer to Appendix A1. 
Therefore, the value of the tangential and radial 
frictional load factors cannot be established at the 
beginning of a design when the mesh friction coefficient 
is unknown.  As a simplification, it is reasonable to 
ignore the radial frictional load influence by assuming a 
value of unity for the radial frictional load factor. Hence 
Eq. (17) can be modified as:  

2 2/ /
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κ κ
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⎜ ⎟ ⎢ ⎥= − +
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 (18) 

Values of stress concentrations are required in Eqs. 
(14), (17) and (18). Table 2 is suggested for use in gear 
bending stress estimation during initial sizing [20]. The 
values of the stress concentration factors in the table 
have no relationship with the point of load application 
on a gear tooth.  

 
Table 2: Stress Concentration Factors for Gears 

Gear Material Type σk  τk  
Cast iron and non-ferrous materials 1.40 1.75 
Normalized steels (< 300 HVN) 1.50 1.85 
Quenched & tempered steels ( ≤ 450 
HVN) 1.60 2.00 

Case-hardened steels ( > 450 HVN) 1.50 1.85 
 
 

4. SERVICE LOAD FACTOR (KS) 
 
The original Lewis formula assumes the gear load to be 
static but it is dynamic in practice and experience shows 
that the forces acting on equipment in service are 
generally higher than the rated or nominal values in gear 
drives. Practically, the design or service load is often 
estimated by multiplying the rated load with a service 
load factor which is used to account for load increases 
during normal operations of gearsets. It is a load 
magnification factor in gear design.  

In the AGMA model without friction consideration: 

ss a v m rK K K K K=   (19) 

When tangential frictional load is accounted for: 

/
s t ssK Kα=   (20) 

For an approximate analysis with both tangential and 
radial frictional load components accounted for: 

s ss oK K K=    o tK aα>  (21) 
 

5. WORKING VERSIONS OF MODIFIED LEWIS 
BENDING STRESS FORMULA 

 
Surface roughness can influence friction, especially 
rough surfaces, but it seems to have a greater influence 
on the actual contact area when two bodies are in 
relative sliding motion [21]. So, the effect of surface 
roughness may be accounted for through an effective 
facewidth factor (λe). Other factors such as thermal 
gradient, centrifugal forces, work hardening, residual 
stresses [7], etc. can distort pinion or gear shape and 
lead to teeth mismatch so that full contact does not 
occur over the nominal facewidth of meshing gears. In 
general, the effective facewidth factor will be assumed 
to account for surface roughness, surface treatment 
quality and miscellaneous effects that make contact over 
the full nominal facewidth of a gear impossible. AGMA 
[22] suggests a value of 0.95 for the effective facewidth 
factor of helical gears; this value is here adopted for 
spur gears also. Eq. (14) can then be modified by 
introducing the service load factor and the effective 
facewidth factor. Equations (22) to (25) are derived 
from Eq. (14) with the service load factor and the effec-
tive facewidth factor incorporated. 

When mesh friction is neglected, both tangential and 
radial frictional load factors are ignored. The root stress 
can be calculated as: 

3

/
2 10t ss

t
e t t

k k K T
m bdY

σσ
λ ϖ

×
=   (22) 

Eq. (22) is required to verify that the new approach 
presented is reasonable as the stress estimates from it 
can be compared with current AGMA model that does 
not consider frictional load contribution to root stress. 

When radial frictional load factor is unity: 
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The modified Lewis model which takes both tan-
gential and radial frictional load factors into account is: 

/ / 3

/
2 10t s

t
e t t

k k K T
m bdY

σσ
λ ϖ

×
=    (24) 

Note that Eq. (24) and Eq. (17) constitute the revised 
Lewis bending stress capacity model. The effective 
stress increase due to the radial frictional load factor can 
be assessed by comparing results of root bending stress 
computations from Eq. (23) with those from Eq. (24). 

An approximate model that is an alternative to Eq. 
(24) which directly accounts for both tangential and 
radial frictional load through a friction load factor is: 

3

/
2 10t s

t
e t t

k k K T
m bdY

σσ
λ ϖ

×
=   (25) 

The difference between Eq. (24) and Eq. (25) is that 
the tangential and radial frictional load factors are 
eliminated in the latter. This is advantageous because 
there is no longer need to know the mesh friction 
coefficient since this is taken care of by the friction load 
factor component in the service load factor. Usually, the 
mesh friction coefficient can only be estimated after a 
gearset is sized, gearbox is designed, and a lubricant 
chosen. Hence using Eq. (25) as an approximation in 
estimating the bending stress of spur gears circumvents 
these other activities. 

 
6. AGMA MODELS 
 
The current AGMA [22] bending stress capacity model 
for spur gears which does not consider mesh friction 
always may be expressed as: 

ss t
bt

t

K F
bm J

σ =    (26) 

A slightly modified AGMA bending stress capacity 
model for spur gears which considers mesh friction 
always may be expressed as: 

s t
bt

t

K F
bm J

σ =   (27) 

For a proof of the validity of the revised Lewis 
model, results of root bending stress computations from 
Eq. (22) can be compared with those from AGMA 
model of Eq. (26) since both ignore frictional load. A 
good comparison should be persuasive in accepting the 
revised Lewis model as adequate for root bending stress 
estimation because AGMA standards are commonly 
used for gear business transactions globally. 

 
7. DESIGN EXAMPLES 
 
The new design formulas presented in the previous 
sections are applied to five design examples taken from 
the references stated. The equations presented were 
coded in Microsoft Excel for computational efficiency. 
The problem statements in the design examples were 
paraphrased and the design parameters were converted 

to metric units where necessary by the authors. The goal 
is to estimate the root bending stresses using the new 
formulas and make comparisons with those from 
AGMA model. AGMA standards are perhaps the most 
popular gear standards in use and have a good 
reputation amongst gear designers and manufacturers.  

  
8. DESIGN PROBLEMS 
 
The five design problems are considered below. The 
solutions to the problems are available from the stated 
references and comparisons will be made with the esti-
mates from the formulas presented in the sections 
above. 

Example 1: A gearset transmits 3 kW from an elec-
tric motor with the pinion running at 1800 rpm. The 
gearset has a pressure angle of 20o, pinion teeth of 17, 
gear teeth of 52, module of 2.54 mm and facewidth of 
38.1 mm [7]. Determine the root bending stress on the 
pinion. 

Example 2: A gearset transmits 3 kW from an electric 
motor with the pinion running at 1425 rpm. The gearset 
has a pressure angle of 20o, pinion teeth of 18, gear teeth 
of 50, module of 2.50 mm and facewidth of 30 mm [23]. 
Determine the root bending stress on the pinion. 

Example 3: A gearset transmits 15 kW from a pinion 
at 1260.5 rpm. The gearset has a module of 1.25 mm, 
pinion teeth of 54, gear teeth of 270, and a facewidth of 
60 mm [4]. What is the expected root bending stress? 

Example 4: A gearset transmits 18.64 kW from a 
pinion at 1750 rpm. The gearset has a module of 3.175 
mm, pinion teeth of 20, gear teeth of 70, and a facewidth 
of 38.1 mm [1]. What is the expected root bending stress? 

Example 5: A spur gearset of steel and ductile cast 
iron transmits a torque of 1694.8 Nm at the pinion at 
406 rpm. The gearset basic size data are:  20, 127 mm, 
25.4 mm. The gearset has a pressure angle of 20o [24]. 
What is the expected root bending stress? 

 
9. SOLUTIONS TO PROBLEMS 
 
Table 3 summarizes the basic gearset dimensions and 
load data for examples 1 to 5. The service load factors 
were evaluated and used for root bending stress 
estimation. Table 4 shows the stresses from the “no 
friction” revised Lewis model (Eq. (18) and Eq. (22)) 
and current AGMA model (Eq. (26)). Table 5 gives the 
results for the problems for the revised Lewis model 
summarized by Eq. (22), Eq. (23) and Eq. (24). Table 6 
shows the increases in root bending stress from radial 
frictional load component and total frictional load 
(combined tangential and radial frictional load 
components). The stress concentration factor values 
used in the bending stress estimations were taken from 
Table 2 with a value of 1.5 used for bending stress and 
1.85 used for shear stress. 

 
10. DISCUSSIONS 
 
Mesh friction can be associated with three main lubri-
cation regimes in gearing. These are hydrodynamic, 
elastohydrodynamic, and boundary lubrications. In hyd-
rodynamic lubrication, gear surfaces in relative motion 
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are separated by a thick oil film and it is often called 
thick film lubrication. In elastohydrodynamic lubrica-
tion, gear surfaces are separated by an oil film as in 
hydrodynamic but the oil film is thin, so it is also called 
thin film lubrication. Hydrodynamic lubrication is the 
lubrication of surfaces separated by a thick fluid film 
that is created by the internal pressure developed as a 
result of the relative motion between two non-parallel 
surfaces. In gearing, this lubrication type is expected at 
high speed and low to moderate contact stresses. 
Elastohydrodynamic lubrication (EHL) is a thin fluid-
film lubrication in which hydrodynamic action is signi-
ficantly enhanced by surface elastic deformation and 
lubricant viscosity increases due to high contact pre-
ssure. This type of lubrication is expected at high speed 
and high contact stress. The frictional resistance in full 
film lubrication arises from the viscosity of the lubricant 
and is usually very low. Consequently frictional damage 
is minima and occurs mainly at startup and shutdown of 
the gear drives. Slow turning and/or heavily loaded gear 
drives tend toward boundary lubrication where point 
loading can result in surface separation between gear 
teeth that is equal to or less than the mean surface 
roughness of the mating gears (boundary lubrication). 
Contact of some asperities on the gear surfaces is 
inevitable and frictional resistance tends to be high. 
Frictional damage is important in boundary lubrication 

and more so in dry rubbing surfaces. Mesh friction is 
important because frictional work leads to heat 
generation which reduces both the viscosity of gear 
lubricants and lubrication effectiveness. Lubricant 
breakdown can occur if the viscosity becomes too low, 
resulting in severe pitting or scoring of gear surfaces. 
The influence of frictional load on contact and bending 
stresses in gear meshes makes mesh friction a relevant 
concern in gear drives. 

Table 4 shows the results from Eq. (22) for the 
revised Lewis model without mesh friction consi-
deration and Eq. (26) for AGMA current model that 
does not consider mesh friction also in the second and 
third columns, respectively. The percentage deviations 
in the second column from those in the third column are 
given in the fourth column. Fig. 8 shows the plot of the 
root bending stresses for visual comparison. It is seen 
from the deviations in Table 4 and Fig. 8 that the new 
revised Lewis model without mesh friction compares 
excellently with the current AGMA model that ignores 
mesh friction. Specifically, the fourth column of Table 4 
indicates that the deviations are generally positive which 
means the stresses from the revised Lewis model are 
slightly higher than those of AGMA. This is expected 
since the new revised Lewis model considers shear 
stress contribution, which is ignored by the AGMA 
model.                        

Table 3: Input Parameters for Bending Stress for Examples 

Examples Parameters 
1 2 3 4 5 

Transmitted power (kW) 3 3 15 18.64 72.06 
Pinion speed (rpm) 1800 1425 1260.5 1750 406 
Pinion torque (Nm) 15.92 20.10 113.64 101.71 1694.8 
Speed ratio 3.061 2.778 5.0 3.50 1.0 
Normal pressure angle (o) 20 20 20 20 20 
Normal module (mm) 2.54 2.50 1.25 3.175 6.35 
Pinion teeth number 17 18 54 20 20 
Gear teeth number 52 50 270 70 20 
Pinion pitch diameter (mm) 43.18 45 67.5 63.5 127 
Gear pitch diameter (mm) 132.08 125 337.5 222.25 127 
Face width (mm) 38.1 30 60 38.1 25.4 

Table 4: Results for No Friction for AGMA and New Models 

Example New Model (No Friction) Current AGMA Deviation (%) 
Ref. [7] 40.22 42.66 -5.71 

Ref. [21] 62.73 60.39 3.87 
Ref. [4] 151.85 149.21 1.77 
Ref. [1] 209.78 204.61 2.53 

Ref. [22] 799.73 732.11 9.24 

Table 5: Closed Drive Frictional Load Contributions for 0.07 Mesh friction Coefficient 

Example 
Friction 
Ignored 

Radial Friction 
Ignored New Model Radial Contr. (%) Total Friction Contr 

(%) 
Ref. [7] 40.22 42.23 42.71 1.13 6.18 

Ref. [21] 62.73 65.86 66.59 1.10 6.16 
Ref. [4] 151.85 159.44 161.44 1.25 6.31 
Ref. [1] 209.78 220.27 222.75 1.13 6.18 

Ref. [22] 799.73 839.72 849.18 1.13 6.18 
Average 1.15 6.20 
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Fig. 8: New Model Verification 

In order to generate the data of Table 5, root bending 
stresses were calculated using Eqs. (22), (23), and (24) 
for a mesh friction coefficient of 0.07. The second 
column shows the results without mesh friction being 
considered (Eq. (22)) , the third column shows the 
results with only tangential frictional load (no radial 
frictional load) considered (Eq. (23)) and the fourth 
column shows the results when both tangential and 
radial frictional loads are considered (Eq. (24). The 
percentage differences between the fourth and third 
columns are shown in the fifth column as the 
contribution of the radial frictional load component. 
Table 6: Frictional Load Impact on Root Bending Stress 

Mesh Friction 
Coefficient 

Radial 
Contribution (%) 

Total Contribution 
(%) 

0.02 0.29 2.29 
0.05 0.80 4.84 
0.07 1.15 6.20 
0.10 1.66 8.78 
0.15 2.30 12.53 
0.20 3.16 17.60 

 
In Table 5, the percentage differences between the 

fourth and second columns are shown in the sixth 
column as the combined or total contribution of both the 
tangential and the radial frictional load components. The 
last row of the table shows the average percentage 
contribution to root bending stress increases by the 
radial frictional load component and combined tangen-
tial and radial frictional load components. Similar cal-
culations were carried out for mesh friction coefficients 
of 0.02, 0.05, 0.10, 0.15, and 0.20 but the results are not 
presented for the sake of brevity. 

Table 6 is the summary of the average percentage 
contribution to root bending stress increases by the ra-
dial frictional load component and combined tangential 
and radial frictional load components for mesh friction 
coefficients of 0.02, 0.05, 0.10, 0.15, and 0.20.  These 
were obtained using the procedure described above for 
Table 5. It is observed that as the mesh friction coeffi-
cient increases, so does the radial frictional load contri-
bution and similarly, the combined frictional load as 
expected.  

Fig. 9 shows the plots of Table 6 values, where the 
frictional load contributions to root bending stress incre-
ases can be visualized.  
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Fig. 9: Root stress increase due to mesh friction 
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Fig. 10: Enclosed drive sample 

Fig. 10 shows the graphical comparison of results 
obtained from Eq. (24), the new revised Lewis model, 
Eq. (25), the approximate model which is the alternative 
to Eq. (24), and Eq. (27), the adjusted AGMA model for 
a mesh friction coefficient of 0.07, the average value for 
enclosed gear drives. A friction load factor of 1.10 was 
used in applying Eq. (25) and Eq. (27). This figure 
shows very good comparison between these three 
models. However, the approximate model is seen to be 
very slightly conservative compared to the new revised 
Lewis model while the adjusted AGMA model gives 
values also very slightly lower than the new revised 
Lewis model. As pointed out before, it is expected that 
the new revised Lewis model predicts somewhat higher 
values of root bending stress because it accounts for 
shear stress which the AGMA does not.  Fig. 11 is 
similar to Fig. 10 which shows the graphical comparison 
of results for a mesh friction coefficient of 0.15 that is 
considered representative of open gear drives. A friction 
load factor of 1.15 was used in applying Eq. (25) and 
Eq. (27) in Fig. 11. 

Fig. 12 shows the graphical comparison of current 
AGMA model (Eq. (26)) with the new revised Lewis 
model (Eq. (24)), for the representative enclosed and 
open gear drives. This figure is intended to reveal the 
deviations between the current AGMA model and the 
new models developed in this study. The average 
percentage deviation between the new revised Lewis 
model and the current AGMA model for enclosed gear 
drives is 5.95%. A friction load factor 1.10 was very 
slightly conservative for this situation in the 
approximate model of Eq. (25). The average percentage 
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deviation between the new revised Lewis model and the 
current AGMA model for open gear drives is 15.16%. A 
friction load factor 1.15 was very slightly conservative 
for this situation in the approximate model of Eq. (25). 
The deviations from the current AGMA model in the 
figure indicate that mesh friction can have significant 
impact on the root bending stress in spur gears. 
Consequently, it will be reasonable to always consider 
mesh friction in root stress estimation in gear design. 
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Fig. 11: Open drive sample 

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1 1.5 2 2.5 3 3.5 4 4.5 5

St
re

ss
 (

M
P

a)

Examples

Open Drive

Enclosed Drive

Curr. AGMA Model

 
Fig. 12: New model and current AGMA model 

From Table 6 and based on the range of mesh fric-
tion coefficient values studied, in an approximate but 
conservative estimate, it may be deduced that: 

1o mK ς≈ +   (28) 

Eqn. (28) summarizes the findings of this study in an 
approximate sense. It indicates that the influence of the 
mesh friction on the root bending stress of spur gears 
increases as the mesh friction coefficient value 
increases. This influence is marginal at low values such 
as may occur when an oil film is sustained in the gear 
mesh but grows and become more significant as 
boundary and dry friction lubrication regimes prevail. 

Because mesh friction can only be estimated after a 
gearset dimensions are established and a lubricant is 
chosen, Eq. (28) is not helpful for initial sizing of spur 
gears. Hence it becomes necessary to approximate Eq. 
(24) with Eq. (25), especially during initial sizing 
(please see Eq. (A2) and Eq. (A3) in Appendix A1). 
This may be done by slightly increasing the nominal 
transmitted force. The increase can be achieved by 
defining a friction load factor with a value greater than 

unity assigned and incorporated as a component in the 
service load factor. Such a factor can also accommodate 
miscellaneous effects of lubricant viscosity which partly 
determines lubrication effectiveness, and pitch line 
velocity influence on actual contact load in gear design. 
Since AGMA acknowledges the possible influence of 
surface roughness and friction on contact load in gears, 
this study enhances such AGMA notions because the 
friction load factor being suggested may be interpreted 
as being similar to AGMA surface finish factor. 

 
11. CONCLUSIONS 

 
A new revised Lewis bending stress capacity model is 
developed for spur gears and used to study the influence 
of frictional load in gear design. The mesh frictional 
load was resolved into tangential and radial components 
so that their contributions to spur gear root bending 
stress increases could be studied. While the increase in 
root bending stress by the tangential frictional load 
component could be directly predicted, that from the 
radial frictional load component was estimated by 
evaluating root bending stresses of five design 
examples. The analysis results indicate that the 
tangential frictional load component is the primary 
contributor in the increases in root bending stress. The 
radial frictional load component contributes marginally 
to root bending stress increases. It was demonstrated 
that the mesh friction load could increase gear root 
bending stress by up to about 6% in enclosed spur gear 
drives and 15% in open spur gear drives on the average. 
These increases can lead to over-stressing of gears; 
therefore a mesh friction should always be taken into 
account in root bending stress estimation as expressed 
approximately in Eq. (28). Since the mesh friction can 
only be estimated after a gearset is sized, a “friction load 
factor” (K0) of 1.1 is suggested in this study for enclosed 
gear drives and 1.15 is suggested for open gear drives 
that is properly maintained for approximate analysis. It 
is commonly accepted that gear design is complicated 
and therefore, gear design procedures are not precise 
[25]. Hopefully, this study should help improve the 
accuracy of root bending stress estimation for cylin-
drical gears. It should be noted that very little damage, if 
any, is expected when an oil film is sustained between 
the gear teeth due to the low traction from the oil 
viscosity. Mild to severe damage may be expected when 
the gears operate in boundary friction regime or dry 
friction prevails due to the higher mesh friction coeffi-
cient arising from metal-to-metal contact. 
  
APPENDIX A1: MESH FRICTION FOR CYLINDRICAL 
GEARS 
 
The term “gear mesh friction” or simply “mesh friction” 
is used to characterize the frictional behavior occurring 
on the surfaces of a pair of gears in contact during 
operation. Frictional traction can arise from an oil film 
viscosity or from metal-to-metal contact during the 
steady-state or transient-state operation of a spur 
gearsets. An oil film exists in properly lubricated spur 
gears during normal or steady-state operation. At startup 
and shutdown or transient-state operation, boundary 
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lubrication is most likely and frictional load is 
inevitable. During normal operation in gears carrying 
extremely high specific load, the oil film may be squ-
eezed out of the mesh or it may become difficult susta-
ining the oil film because of the heat generated and lub-
ricant breakdown can occur. Consequently metallic 
contact between the gear teeth is inevitable and fric-
tional load sets in. Mesh friction is important because 
frictional work leads to heat generation which reduces 
both the viscosity of gear lubricants and lubrication 
effectiveness. Lubricant breakdown can occur if the 
viscosity becomes too low, resulting in severe pitting or 
scoring of gear surfaces. The influence of frictional load 
on contact and bending stresses in gear meshes makes 
mesh friction a relevant concern in gear drives. How-
ever, very little damage, if any, is expected when an oil 
film is sustained between the gear teeth and mild to 
severe damage may be expected when the gears operate 
in boundary friction regime or dry friction prevails. 

Gear mesh friction is complicated with contributions 
from sliding and rolling. However, pure rolling motion 
occurs only in the vicinity of the pitch point and a 
mixture of sliding and rolling motions predominate 
elsewhere [7]. Sliding friction is more significant in 
power loss than the rolling friction component. Higher 
peripheral speed facilitates the formation of an oil 
wedge in the contact area, resulting in lower frictional 
losses, [10]. A mesh friction model in wormsets where 
sliding motion is relatively high is of the form [26] 
given in Eq. (A1a). This is transformed into Eq. (A1b).   

0.25m
s

A
V

ς =    0.25
m sA Vς=  (A1) 

Table A1 shows limited data on enclosed cylindrical 
gear sliding speed and mesh friction coefficient as 
reported by Petrov et al, [10, p. 114] in columns 1 and 2. 
Column 3 shows the average sliding velocity from 
column 1. Column 4 shows the value of constant “A” 
evaluated using Eq. (A1b) with the indicated average 
sliding speed in column 3 of the table. It is very 
encouraging that the values of “A” are remarkably close 
as indicated in column 4 of the table. 
Table A1: Cylindrical Gear Mesh Friction Data 

sV range mς  sV average A estimate 
0-3 0.100 1.5 0.110 
3-5 0.063 4.0 0.089 
5-10 0.060 7.5 0.099 

10-20 0.050 15.0 0.098 
Average 0.099 

 
Based on the average value of “A” in Table A1, it is 

suggested that:  

0.25
0.10

m
sV

ς ≈     0.04 0.10mς≤ ≤  (A2) 

The average sliding speed in a cylindrical gear mesh 
may be estimated as given in Eq. (A3a) according to 
Maitra [11]. Eq. (A3b) gives the pitch or tangential 
velocity of the gear mesh for external gears. Note that Eq. 
(A3) can be used only after the gearset sizes are known.  

1 2

1 15s tV V
z z

⎡ ⎤
≈ +⎢ ⎥

⎣ ⎦
  310

60t
dNV π −= ×  (A3) 

It must be emphasized that Eq. (A2) gives an 
estimate of the average mesh friction coefficient, not the 
dynamic or instantaneous mesh friction coefficient.   

When the mesh friction coefficient is estimated from 
Eq. (A2), the frictional load factor may be evaluated 
conservatively as:  

1o mK ς≈ +   (A4) 

Eq. (A4) is useful during design verification or 
validation when the gearset is already sized. 

Open gear drives operate in much harsher environ-
ments than enclosed gear drives and lubrication is not as 
good or as effective as in enclosed gears. Higher friction 
is therefore expected, since they operate mostly in boun-
dary to dry friction regimes. For instance, the coefficient 
of friction in boundary lubrication is in the range of 0.05 
to 0.15 [9]. Typically, the dry static friction coefficient 
for popular metallic gear materials appears to be in the 
range of 0.15 to 0.80 [27]. Dry kinetic friction 
coefficient is often at least 25% lower in value than dry 
static friction coefficient but may be as low as 50%. 
Lower values of kinetic friction coefficients are obta-
ined when surfaces are lubricated with grease or oil. 
 
APPENDIX A2: BENDING MOMENT ARM FACTOR 

 
It is observed in [28] that the bending stress form factor 
curves for different addendum correction factors con-
verge to one point for a rack tooth. This indicates that the 
bending stress form factor for a rack is independent of the 
amount of addendum correction applied to the gear tooth. 
Now the rack tooth profile envelops all possible involute 
gear tooth shapes for a tooth standard and hence has a 
fixed tooth width at the root where the maximum tensile 
stress occurs. These reasons suggest that the bending 
moment arm factor λa may be estimated reliably by 
considering the basic rack profile of a gear tooth system. 

Fig. A1 shows the basic rack profile for 200 and 250 
involute gear tooth standards. The fillet radius factor of 
0.35 is a popular value in AGMA recommendations 
[29]. The root thickness is defined at the intersection of 
the fillet radius and the straight flank line of the rack 
tooth. A direct measurement of the root thickness which 
is equal toκ for a module of 1 mm (Eq. 16b), can be 
made from these diagrams. Note that the fillet is 
tangential to both the straight flank line and the root or 
deddendum circle horizontal line shown as hidden line. 
Eq. (A5) is obtained from Eq.  (16b).  

2

/6
a

Y

κ
λ =   (A5) 

The value of Y/ for a rack tooth is required in Eq. (A5) 
and was obtained from [30] and shown in column 2 of 
Table A2 for some popular involute gear tooth standards. 
The values of κ  in the same table are obtained from Fig. 
A1. The fourth column in the table gives the values of λa 
for 200 and 250 involute gear tooth standards based on Eq. 
(4). 
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  a) 200 tooth standard              b)  250 tooth standard 

Fig. A1: Basic rack profile for 200 and 250 involute gear tooth standards 

Table A2: Basic Rack Parameters for Bending Stress 

Tooth Standard Y/* κ  aλ  
20 std 0.47897 2.313 1.862 

20 stub 0.54406 2.313 1.639 
25 std 0.57139 2.553 1.901 

*Values from [30] 
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NOMENCLATURE 

1,2 subscript for pinion and gear respectively 
A a constant 
b nominal facewidth of gear (mm) 
d pitch diameter of pinion or gear (mm) 
d1 pitch diameter of pinion (mm) 
fn resultant frictional force in transverse plane (N) 
ft transverse frictional force (N) 
fr radial frictional force (N) 
Fr nominal radial force (N) 
Ft nominal tangential force (N) 
Fa nominal axial force (N) 
Fn nominal normal contact force (N) 
F'

r effective radial force (N) 
F'

t effective tangntial force (N) 
k1 contact length factor for pinion 
k2 contact length factor for gear 
kσ effective normal stress concentration  factors 
kτ effective shear stress concentration  factor 
k'
σ theoretical normal stress concentration factor 

k'
τ theoretical shear stress concentration factor 

kt stress correction factor for root tensile stress 
Ks service load factor  (nominal value) 
K'

s service load factor (more accurate value) 
Kss AGMA combined load factor 
Ka application or external overload factor 
Kv internal overload or dynamic factor. 
Km mounting or mesh overload factor. 
Kr rim backup factor. 

K0 frictional load factor. 
la bending moment arm (mm) 
mt transverse module (mm) 
N rotational speed of pinion or gear (rpm) 
N1 rotational speed of pinion (rpm) 
P1 power at pinion (kW) 
qσ material normal stress notch sensitivity factor 
qτ material shear stress notch sensitivity factor 
rn pitch radius of pinion or gear in normal      

plane(mm) 
t root thickness (mm) 
T1 torque load at pinion (Nm) 
Vs average sliding speed 
Vt pitch tangential velocity (m/s) 
Y' Lewis bending stress form factor 
z number of teeth on a pinion or gear 
z1 number of teeth on pinion 
z2 number of teeth on gear 
αt tangential friction load factor 
αr radial friction load factor 
λa bending moment arm factor 
κ root thickness factor 
�a contact angle at tip of gear (deg.) 
�t transverse pressure angle (deg.) 
σbt root bending stress from tangential force (MPa) 
σcr compressive stress from radial force (MPa) 
σb combined normal stress at gear root (MPa) 
σt equivalent tensile stress at root of gear (MPa) 
τs direct shear stress at gear root (MPa) 
�t contact ratio in transverse plane 
ςm mesh friction coefficient 
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ПАРАМЕТАРСКА АНАЛИЗА УТИЦАЈА 

ОПТЕРЕЋЕЊА ОД ТРЕЊА  
КОД ОТПОРНОСТИ НА САВИЈАЊЕ 
ЦИЛИНДРИЧНИХ ЗУПЧАНИКА 

 
Е.Е.Осакуе, Л.Анетор, К.Харис 

 
Приказан је модификовани Луисов модел 
капацитета напрезања услед замарања савијањем 
који је примењен у изучавању утицаја трења при 
спрезању на напон у корену зуба. Изворна Луисова 
формула је коришћена али су извршене модифи-
кације код динамичког оптерећења, смицајног 
напона и трења при спрезању код пројектовања 
цилиндричних зупчаника. Утврђено је да трење при 
спрезању може да повећа савојни напон до 6% код 
затворених зупчаника под претпоставком да је 
коефицијент трења услед спрезања 0,07. Повећање 
од 15% код напона у корену зупца може да настане 
код отворених зупчаника, када је коефицијент трења 
услед спрезања 0,15 што представља вредност која 
се сматра репрезентативном за правилно одржавање 
отворених зупчаника. Да би се објаснио утицај 
оптерећења од трења при спрезању и других 
фактора који утичу на трење од спрезања, предлаже 
се да вредност фактора оптерећења услед трења 
буде 1,1 за израчунавање оптерећења код 
затворених и 1,5 код отворених зупчаника. 
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