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In this paper, a new synchronization phenomenon, that is, the simultaneity of synchronization and antisynchronization, is in-
vestigated for a class of chaotic systems. First, for a given chaotic system, necessary and sufficient conditions for the simultaneity of
synchronization and antisynchronization are proved. )en, based on these conditions, all solutions of such synchronization
phenomenon for a given chaotic system are derived. After that, physical controllers that are not only simple but also implementable
are designed to realize the simultaneity of synchronization and antisynchronization in the above system. Finally, illustrative examples
based on numerical simulations are used to verify the validity and effectiveness of the above theoretical results.

1. Introduction

Lorenz firstly proposed the famous Lorenz chaotic system in
1963. From then on, many researchers are stimulated to
investigate the chaotic phenomena, and lots of chaotic
systems and hyperchaotic systems are obtained. Since Pecora
and Carroll first proposed the chaos synchronization
method [1], meanwhile Ott et al. first obtained the chaos
control method [2] in 1990, chaotic systems and their
control problems have attracted significant attention and
have been investigated extensively [3–17]. However, most of
the existing works focus on investigating the same kind of
synchronization in a given system, i.e., all the states of the
master system have the same kind of synchronization with
the corresponding states of the slave system. For example,
when two systems are referred to as completely synchro-
nized with each other, it means that each pair of the states
between the interactive systems is completely synchronous.

In general, coexistence problem is very common, see
[18–22] and the references therein. Recently, a new syn-
chronization phenomenon, that is, the simultaneity of
synchronization and antisynchronization, was firstly found

in the generalized Lorenz system [23]. In this system, the
variables x1, x2 of the master system antisynchronize the
variables y1, y2 of the slave system, while the variable x3 of
the master system synchronizes the variable y3 of the slave
system. )is new synchronization phenomenon is very in-
teresting not only in applications but also in theory. )e
existence of the simultaneity of synchronization and anti-
synchronization problem is a basis for designing a physical
controller. Zhang et al. [23] found this new synchronization
phenomenon, but they did not address some critical theo-
retical questions. For instance, for a given chaotic system,
how to prove the existence of the simultaneity of syn-
chronization and antisynchronization? In addition, if such
new synchronization phenomenon exists, how many solu-
tions can be derived. )erefore, for a given chaotic system, it
is critical to have a systematic method that can be used for
proving the simultaneity of synchronization and anti-
synchronization, deriving all solutions for this type of
synchronization phenomenon and then designing the cor-
responding physical controller. To address this critical
problem, this study is to develop such a systematic method
that can be applied to a class of chaotic systems.
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To realize the simultaneity of synchronization and
antisynchronization in a chaotic system, many methods can
be used, including the linear feedback control method,
nonlinear feedback control method, and dynamic feedback
control method. Among those methods, the dynamic
feedback control method has been widely applied and was
adopted by this study.

In this paper, we investigated the simultaneity of syn-
chronization and antisynchronization problem in a class of
chaotic systems by using the dynamic feedback control
method. At first, the existence of the simultaneity of syn-
chronization and antisynchronization problem of such
system is proved.)en, physical controllers were designed to
realize the simultaneity of synchronization and anti-
synchronization in such system. After that, numerical
simulations were conducted to verify the validity and cor-
rectness of the obtained theoretical results.

2. Preliminary

Consider the following chaotic system:

_X � F(X), (1)

where X ∈ Rn is the state, F(X) ∈ Rn is a continuous vector
function, i.e.,

X �
XE

Xe
􏼠 􏼡,

F(X) �
FE(X)

Fe(X)
􏼠 􏼡 �

FE XE, Xe( 􏼁

Fe XE, Xe( 􏼁
⎛⎝ ⎞⎠,

(2)

XE ∈ Rm, Xe ∈ Rn− m, m≥ 1, FE(X) ∈ Rm, andFe(X) ∈
Rn− m.

For system (1), the slave system can be described as

_Y � F(Y) + Bu, (3)

where Y ∈ Rn is the state, F(Y) ∈ Rn is a continuous vector
function, B ∈ Rn×r is a constant matrix, r≥ 1, and u ∈ Rr is
the controller to be designed, i.e.,

Y �
YE

Ye
􏼠 􏼡,

B �
BE

Be
􏼠 􏼡,

(4)

F(Y) �
FE(Y)

Fe(Y)
􏼠 􏼡 �

FE YE, Ye( 􏼁

Fe YE, Ye( 􏼁
􏼠 􏼡, (5)

where YE ∈ Rm, Ye ∈ Rn− m, m≥ 1,
FE(Y) ∈ Rm, andFe(Y) ∈ Rn− m.

Let EE � XE + YE and Ee � Ye − Xe, then the sum and
error system can be described as follows:

_E � G(X, Y, E) + Bu, (6)

where E ∈ Rn is the state:

E �
EE

Ee
􏼠 􏼡, (7)

G(X, Y, E) �
GE(X, Y, E)

Ge(X, Y, E)
􏼠 􏼡

�
FE YE, Ye( 􏼁 + FE XE, Xe( 􏼁

Fe YE, Ye( 􏼁 − Fe XE, Xe( 􏼁
􏼠 􏼡,

(8)

_E
E

� F
E

Y
E
, Y

e
􏼐 􏼑 + F

E
X

E
, X

e
􏼐 􏼑 + B

E
u, (9)

_E
e

� F
e

Y
E
, Y

e
􏼐 􏼑 − F

e
X

E
, X

e
􏼐 􏼑 + B

e
u, (10)

where B is given by equation (4).
Next, a definition is presented as follows.

Definition 1. Consider the sum system (9) and the error
system (10). If limt⟶∞‖EE(t)‖ � 0 and limt⟶∞‖Ee(t)‖ � 0,
then the master system (1) and the slave system (3) are called
to achieve the simultaneity of synchronization and
antisynchronization.

To present the proposed method, a lemma is introduced
at first.

Lemma 1 (see [17]). Consider the following system:
_x � h(x) + bu, (11)

where x ∈ Rn is the state, h(x) ∈ Rn is a vector function,
b ∈ Rn×l is a constant matrix, l≥ 1, and u ∈ Rl is the controller
to be designed. If (h(x), b) can be stabilized, then a dynamic
feedback controller u is designed as follows:

u � Kx, (12)

where K � k(t)bT, and the feedback gain k(t) is updated by
the following law:

_k(t) � − ‖x(t)‖
2
. (13)

3. Problem Formulation

Consider the following chaotic system:
_x � f(x), (14)

where x ∈ Rn is the state and f(x) ∈ Rn is a vector function.
)e main goal of this paper is to investigate the si-

multaneity of synchronization and antisynchronization for
the given chaotic system (14) in the following three aspects:

(1) )e existence of the simultaneity of synchronization
and antisynchronization.

(2) )e solutions of the simultaneity of synchronization
and antisynchronization for this chaotic system.

(3) )e implementation of the simultaneity of syn-
chronization and antisynchronization. A simple and
physically implementable controller is designed for
such a problem.
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4. Main Result

4.1. Existence of the Simultaneity of Synchronization and
Antisynchronization. In this section, the necessary and
sufficient conditions for the existence of the simultaneity of
synchronization and antisynchronization are proved for two
given chaotic systems.

Theorem 1. Consider the chaotic system (1). Its existence of
the simultaneity of synchronization and antisynchronization
can be realized by the controllers in the following form:

u � H E
E
, E

e
, X􏼐 􏼑,

H(0, 0, X) � 0,
(15)

if and only if

F
E

X
E
, X

e
􏼐 􏼑 � − F

E
− X

E
, X

e
􏼐 􏼑, (16)

F
e

X
E
, X

e
􏼐 􏼑 � F

E
− X

E
, X

e
􏼐 􏼑. (17)

Proof (necessity). According to the nonlinear control the-
orem, EE � 0 and Ee � 0 should be the equilibria of the
following systems:

_E
E

� F
E

Y
E
, Y

e
􏼐 􏼑 + F

E
X

E
, X

e
􏼐 􏼑

� F
E

E
E

− X
E
, E

e
+ X

e
􏼐 􏼑 + F

E
X

E
, X

e
􏼐 􏼑,

(18)

_E
e

� F
e

Y
E
, Y

e
􏼐 􏼑 − F

e
X

E
, X

e
􏼐 􏼑

� F
e

E
E

− X
E
, E

e
+ X

e
􏼐 􏼑 − F

E
X

E
, X

e
􏼐 􏼑,

(19)

respectively.
It results in

F
E

− X
E
, X

e
􏼐 􏼑 + F

E
X

E
, X

e
􏼐 􏼑 � 0,

F
e

− X
E
, X

e
􏼐 􏼑 − F

E
X

E
, X

e
􏼐 􏼑 � 0,

(20)

i.e., equations (16) and (17) hold. □

Proof (sufficiency). If equations (16) and (17) hold, which
implies that EE � 0 and Ee � 0 are the equilibria of systems
(18) and (19), respectively. )us, the simultaneity of syn-
chronization and antisynchronization for the given chaotic
system can be realized by the controller u given in equation
(15).

Especially, if

F(X) �
FE XE, Xe( 􏼁

Fe XE, Xe( 􏼁
⎛⎝ ⎞⎠ �

M Xe( )XE

N XE( 􏼁Xe
⎛⎝ ⎞⎠, (21)

where N(− XE) � N(XE), system (1) becomes

_X
E

� M X
e

( 􏼁X
E
,

_X
e

� N X
E

􏼐 􏼑X
e
,

(22)

and the simultaneity of synchronization and anti-
synchronization of system (22) holds. □

Theorem 2. Consider the chaotic system (14). Its existence of
the simultaneity of synchronization and antisynchronization
if and only the following algebraic equation about α

f1(αx) ≡ α1f1(x),

f2(αx) ≡ α2f2(x),

⋮ ≡ ⋮

fn(αx) ≡ αnfn(x),

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(23)

has a solution in the following form:

β(s)
�

αi1

⋮

αis− 1

αis

αis+1

⋮

αin

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

− 1

− 1

⋮

− 1

1

⋮

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

←s, (24)

where s≥ 1 is the number of αij
� − 1,

ij ∈ Λ � 1, 2, . . . , n{ }, j � 1, 2, . . . , n, and α is given as
follows:

α �

α1 0 0 · · · 0

0 α2 0 · · · 0

0 0 α3 · · · 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 · · · αn

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

αi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌 � 1, i ∈ Λ. (26)

Proof. For system (14), the uncontrolled slave system is
given as

_y � f(y), (27)

where y ∈ Rn is the state.
Let e � y − αx, where α is given in (25), then the sum and

error system is
_e � f(y) − αf(x), (28)

where e ∈ Rn is the state.
)en, the existence of the simultaneity of synchroni-

zation and antisynchronization in system (14) if and only if
e � 0 is the equilibrium point of system (28), i.e.,

f(y) − αf(x) � f(αx) − αf(x) ≡ 0, (29)

which completes the proof. □

4.2. Solutions of the Simultaneity of Synchronization and
Antisynchronization. We can obtain all solutions of the
simultaneity of synchronization and antisynchronization in
the given chaotic system (14) by solving equation (23).

After proving the existence of the simultaneity of syn-
chronization and antisynchronization in a given chaotic
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system (1), the question about how to find a nonsingular
transformation matrix T to transfer system (14) into system
(1) will be raised naturally.

In general, according to the solutions of the algebraic
equation (23), we can find the matrix T by the following
algorithm:

Algorithm 1. k � 1; let s be the number of αj � − 1, j ∈ Λ,

min j | αj � − 1, j ∈ Λ􏽮 􏽯≜ik, (30)

while k≤ s do

k � k + 1, (31)

minj∈Λ αj � − 1, j≠ i1, i2, . . . , ik− 1􏽮 􏽯≜ik. (32)

)en, let

X
E

�

XE
1

XE
2

⋮

XE
s

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

xi1

xi2

⋮

xis

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (33)

Next,

k � s + 1, (34)

min j | αj � 1, j ∈ Λ􏽮 􏽯≜ ik. (35)

while k≤ n do

k � k + 1, (36)

min αj � 1, j≠ is+1, is+2, . . . , ik− 1, j ∈ Λ􏽮 􏽯≜ ik. (37)

)en, let

X
e

�

Xe
s+1

Xe
s+2

⋮

Xe
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

xis+1

xis+2

⋮

xin

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (38)

By Algorithm 1, the nonsingular transform matrix T can be
obtained as follows:

T �

δi1
n

⋮

δis
n

⋮

δin
n

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (39)

δi1
n �

0 · · · 0 1 0 · · · 0
↑
i1

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ ∈ R

n
, (40)

where ij ∈ Λ, j � 1, 2, . . . , n.

For example, for the chaotic system, _x � f(x), x ∈ R3,
and f(x) ∈ R3. If α1 � − 1, α2 � 1, and α3 � − 1, then s � 2,
i1 � 1, i2 � 3, and i3 � 2. By Algorithm 1, we obtain

T �

δi1
3

δi2
3

δi3
3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

δ13
δ33
δ23

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

1 0 0

0 0 1

0 1 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (41)

By T, the system _x � f(x) is transferred into the fol-
lowing system:

_X � F(X), (42)

X �

X1

X2

X3

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ �

XE

Xe
􏼠 􏼡 � Tx �

x1

x3

x2

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠,

F(X) �

F1(X)

F2(X)

F3(X)

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ �

FE XE, Xe( 􏼁

Fe XE, Xe( 􏼁
􏼠 􏼡

� Tf(x) �

f1(x)

f3(x)

f2(x)

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠.

(43)

4.3. Implementation of the Simultaneity of Synchronization
and Antisynchronization. In this section, a simple and
physically implementable controller is designed for the
implementation of the simultaneity of synchronization and
antisynchronization.

According to the results in [16], we propose the fol-
lowing theorem.

Theorem 3. Consider the sum system (9) and error system
(10).

If (G(X, Y, E), B) can be stabilized, then the controller u

is designed as follows:

u � KE, (44)

where K � k(t)BT, and k(t) is updated by the following
update law:

_k � − c‖E‖
2
, (45)

and c> 0, which implies that the master system (1) and the
slave system (3) reach the simultaneity of synchronization and
antisynchronization.

Proof. Since (G(X, Y, E), B) can be stabilized, according to
Lemma 1, the controller u is designed as equation (44). □

5. Illustrative Examples Based on
Numerical Simulations

In this section, two examples based on numerical simula-
tions are used to demonstrate the validity and effectiveness
of the derived theoretical results.
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Example 1. )e Lorenz system [24]:

_x � f(x) �

f1(x)

f2(x)

f3(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

10 x2 − x1( 􏼁

28x1 − x2 − x1x3

−
8
3
x3 + x1x2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (46)

According to the algebraic equation (24),
f1(αx) − α1f1(αx) � 10 α2 − α1( 􏼁x2 ≡ 0,

f2(αx) − α2f2(αx) � 28 α1 − α2( 􏼁x1 − α1α3 − α2( 􏼁x1x3 ≡ 0,

f3(αx) − α3f3(αx) � α1α2 − α3( 􏼁x1x2 ≡ 0,

⎧⎪⎪⎨

⎪⎪⎩

(47)

and it results in
α2 � α1,

α1α3 � α2,

α1α2 � α2.

⎧⎪⎪⎨

⎪⎪⎩
(48)

By solving equation (48), a solo solution can be obtained:

β(2)
�

αi1

αi2

αi3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

α1
α2
α3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

− 1

− 1

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (49)

By Algorithm 1, it results in

T �

δi1
3

δi2
3

δi3
3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

δ13
δ23
δ23

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

1 0 0

0 1 0

0 0 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (50)

)us, let XE � (x1, x2)
T andXe � x3; the Lorenz system

(46) is rewritten as follows:

_X
E

� F
E
(X),

_X
e

� F
e
(X),

(51)

F
E
(X) � M X

e
( 􏼁X

E
, (52)

M X
e

( 􏼁 �
− 10 10

28 − Xe − 1
􏼠 􏼡, (53)

F
e
(X) � −

8
3
X

e
+ X

E
1X

E
2 . (54)

)en, the slave Lorenz system is given as

_Y � F(Y) + Bu, (55)

Y �
YE

Ye
􏼠 􏼡,

F(Y) �
FE(Y)

Fe(Y)
􏼠 􏼡,

(56)

F
E
(Y) � M Y

e
( 􏼁Y

E
, (57)

M Y
e

( 􏼁 �
− 10 10

28 − Ye − 1
􏼠 􏼡, (58)

F
e
(Y) � −

8
3
Y

e
+ Y

E
1Y

E
2 , (59)

B �
BE

Be
􏼠 􏼡 �

BE

0
􏼠 􏼡,

B
E

�
0
1

􏼠 􏼡.

(60)

Let EE � XE + YE andEe � YE − Xe; then, the sum and
error system is given as

_E � G(X, Y, E) + Bu, (61)

E �
EE

Ee
􏼠 􏼡, (62)

where B is given by equation (60) and u is the controller to be
designed.

Considering the following uncontrolled sum and error
system,

_E
E

1 � − 10E
E
1 + 10E

E
2 ,

_E
E

2 � 28E
E
1 − E

E
2 − E

E
1E

e
3 − X

e
3E

E
1 + X

E
1E

e
3,

_E
e

3 � −
8
3
E

e
3 + E

E
1E

E
2 − X

E
1E

E
2 − X

E
2E

E
1 ,

(63)

if EE
2 � 0, then the following system

_E
E

1 � − 10E
E
1 ,

_E
e

3 � −
8
3
E

e
3 − X

E
2E

E
1 ,

(64)

is globally asymptotically stable.
)us, (G(X, Y, E), B) can be stabilized, and according to

)eorem 3, the controller is designed as

u � KE � k(t)B
T
E � k(t) 0 1 0( 􏼁E � k(t)E

E
2 , (65)

_E
E

1 � − 10E
E
1 + 10E

E
2 ,

_E
E

2 � 28E
E
1 − E

E
2 − E

E
1E

e
3 − X

e
3E

E
1 + X

E
1E

e
3 + k(t)E

E
2 ,

_E
e

3 � −
8
3
E

e
3 + E

E
1E

E
2 − X

E
1E

E
2 − X

E
2E

E
1 ,

(66)

and _k(t) � − ‖E‖2.
To demonstrate the validity and correctness of the de-

rived theoretical results, numerical simulation is conducted
by setting the following initial conditions:
x1(0) � 1.2, x2(0) � − 2.3, x3(0) � 3.2,
y1(0) � 5.8, y2(0) � − 6.2, y3(0) � 7.1, and k(0) � − 1.
Figure 1 shows that the sum and error system is asymp-
totically stable; Figure 2 shows that the states of the master
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system (49) and the controlled slave system (53), respec-
tively. Figure 3 shows that the feedback gain k(t) tends to a
constant.

Example 2. )e Chen–Lee system [25]:

_x � f(x) �

f1(x)

f2(x)

f3(x)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

− x2x3 + 5x1

x1x3 − 10x2

1
3
x1x2 − 3.8x3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (67)

where x ∈ R3 is the state and f(x) ∈ R3 is a continuous
vector function.

According to the algebraic equation (23), it results in

α2α3 � α1,

α1α3 � α2,

α1α3 � α2.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(68)

)ere are three solutions for equation (68), i.e.,

β(2)
1 �

αi1

αi2

αi3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

α2
α3
α1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

− 1

− 1

1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, (69)

β(2)
2 �

αi1

αi3

αi2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

α1
α3
α2

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ �

− 1
− 1
1

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠, (70)

β(2)
3 �

αi1

αi2

αi3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

α1
α2
α3

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠ �

− 1
− 1
1

⎛⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎠. (71)

For the solution given in equation (69),
α1 � 1 and α2 � α3 � − 1.

By Algorithm 1, it results in

T �

δi1
3

δi2
3

δi3
3

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

δ23

δ33

δ13

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

0 1 0

0 0 1

1 0 0

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (72)

)us, let XE � (XE
1 , XE

2 )T � (x2, x3)
T, Xe � x1; then, the

Chen–Lee system (67) is rewritten as follows:
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_X
E

� F
E

X
E
, X

e
􏼐 􏼑,

_X
e

� F
e

X
E
, X

e
􏼐 􏼑,

(73)

F
E

X
E
, X

e
􏼐 􏼑 � M X

e
( 􏼁X

E
, (74)

M X
e

( 􏼁 �

− 10 Xe

1
3
X

e
− 3.8

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠, (75)

F
e

X
E
, X

e
􏼐 􏼑 � 5X

e
− X

E
1X

E
2 , (76)

and Fe(XE, Xe) � Fe(− XE, Xe).
Next, the slave Chen–Lee system is given as

_Y
E

� F
E

Y
E
, Y

e
􏼐 􏼑 + B

E
u,

_Y
e

� F
e

Y
E
, Y

e
􏼐 􏼑 + B

e
u,

(77)

F
E

Y
E
, Y

e
􏼐 􏼑 � M Y

e
( 􏼁Y

E
, (78)

M Y
e

( 􏼁 �

− 10 Ye

1
3
Y

e
− 3.8

⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠, (79)

F
e

Y
E
, Y

e
􏼐 􏼑 � 5Y

e
− Y

E
1Y

E
2 , (80)

B
E

�
0 0
1 0

􏼠 􏼡,

B
e

� 0 1( 􏼁,

(81)

and Fe(YE, Ye) � Fe(− YE, Ye); the controller u is designed
as follows:

u � KE � k(t)B
T
E � k(t)

0 1 0

0 0 1
􏼠 􏼡E �

k(t)EE
2

k(t)Ee
3

⎛⎝ ⎞⎠,

(82)

and _k(t) � − ‖E‖2.
Similarly, for this example, numerical simulation is

conducted by setting following initial conditions:
x1(0) � 1.2, x2(0) � − 3.1, x3(0) � 1.2,
y1(0) � 4.8, y2(0) � − 3.2, y3(0) � 7.6, and k(0) � − 1.
Figure 4 shows that the sum and error system is asymp-
totically stable; Figure 5 shows the states XE

1 , XE
2 , Xe

3 and
YE
1 , YE

2 , Ye
3, respectively. Figure 6 shows that the feedback

gain k(t) tends to a constant.
For solutions given in equations (70) and (71), similar

results can be obtained by the same procedure:

–6

–4

–2

0

2

4

6

EE 1, 
EE 2, 

Ee 3

Time (t)
0 1 2 3 4 5 6 7 8 9 10

EE1
EE2
Ee3

Figure 4: )e sum and error system is asymptotically stable.
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6. Conclusions

In this paper, we investigated a new synchronization phe-
nomenon that is the simultaneity of synchronization and
antisynchronization for a class of chaotic systems. We de-
veloped a systematic method that can be used for proving the
existence of the simultaneity of synchronization and anti-
synchronization, deriving all solutions for this type of
synchronization phenomenon and then designing the cor-
responding physical controllers. To verify the validity and
effectiveness of the theoretical results, two illustrative ex-
amples based on numerical simulations were provided.

In the future, microcontroller-based applications and
predefined-time chaos synchronization problem need to be
developed based on the results of this study.
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