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Abstract: National environmental regulations lack short-term standards for variability in fine par-
ticulate matter (PM2.5); they depend solely on concentration-based standards. Twenty-five years
of research has linked short-term PM2.5, that is, increases of at least 10 µg/m3 that can occur in-
between regulatory readings, to increased mortality. Even as new technologies have emerged that
could readily monitor short-term PM2.5, such as real-time monitoring and mobile monitoring, their
primary application has been for research, not for air quality management. The Gulf oil spill offers
a strategic setting in which regulatory monitoring, computer modeling, and stationary monitoring
could be directly compared to mobile monitoring. Mobile monitoring was found to best capture
the variability of PM2.5 during the disaster. The research also found that each short-term increase
(≥10 µg/m3) in fine particulate matter was associated with a statistically significant increase of 0.105
deaths (p < 0.001) in people aged 65 and over, which represents a 0.32% increase. This research
contributes to understanding the effects of PM2.5 on mortality during a disaster and provides justifi-
cation for environmental managers to monitor PM2.5 variability, not only hourly averages of PM2.5

concentration.

Keywords: air pollution; particulate matter; mobile monitoring; short-term exposure; mortality; Gulf
oil spill

1. Introduction

In air pollution disasters, real-time monitoring of fine particulate matter (PM2.5) makes
it possible to track pollution impacts and to deliver timely warnings to the public [1]. The
Deepwater Horizon oil spill of 2010 (also known as the British Petroleum (BP) oil spill, the
Gulf oil spill, and the Gulf of Mexico oil spill) was the largest marine oil spill in history. On
20 April 2010, an explosion and fire occurred on the Deepwater Horizon offshore drilling
rig in the Gulf of Mexico, killing 11 workers and causing oil to leak from the deep water
well. A total of 4.9 million barrels of oil spewed uncontrollably until the well was sealed on
19 September 2010 [2]. During the disaster, plumes of particulate matter were spread across
several Gulf Coast states [3]. Flight monitoring by the National Oceanic and Atmospheric
Administration (NOAA) determined that 12,567 tons of soot and aerosols were generated
by the spill and that public health was likely at risk [4,5]. Mobile monitoring by British
Petroleum and modeling by the Centers for Disease Control and Prevention (CDC) also
confirmed particulate matter above normal levels [6,7].

The total mass of particulates exceeded the Environmental Protection Agency’s (EPA)
Significant Emission Rate of 10 tons per year of direct PM2.5 and 40 tons per year of
precursor pollutants (volatile organic compounds, VOCs) [8]. In response to the disaster, the
Environmental Protection Agency and British Petroleum established the most extensive air
monitoring regime ever undertaken in the region. The air monitoring network comprised
a vast array of mobile and stationary monitors, regulatory monitors, flight monitors, and
computer modeling [5–7,9,10].

Particulate matter was selected as the air pollutant for study because it was a signif-
icant contaminant released during the oil spill: 1323 tons of soot particles were emitted
from controlled burns, and 11,244 tons of secondary aerosol particles were created from
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evaporating hydrocarbons [4]. Additionally, a large amount of particulate matter data
gathered during the oil spill exceeded health-based standards across the six-parish re-
gion [11]. According to the EPA [12], two pollutants—particulate matter and ground-level
ozone—pose the greatest threat to human health in the US. PM2.5 was selected because of
its human health impacts and prevalence during the Gulf oil spill.

This paper investigates the association between PM2.5 variability and mortality during
the Gulf oil spill. The variability of PM2.5, measured as short-term increases, is known to
cause increased mortality in older populations under normal conditions [13–15]. Addition-
ally, spatiotemporal data collection has been shown to more accurately represent PM2.5
variability [16]. This research examined these two issues via the following research ques-
tions: (1) compared to other available data, was spatiotemporal data better at representing
PM2.5 variability during the Gulf oil spill? and (2) were deaths during the Gulf oil spill in
people aged 65 and over associated with PM2.5 variability?

Particulate matter variability is a function of many factors, including atmospheric
dispersion, particle deposition, particle composition, topographic change, and the multi-
plicity of natural and human-made sources, most significantly vehicle emissions in urban
areas [17,18]. Peters et al. [19] found that spatial variability in air pollution was higher
for fine particle sizes than for coarse particles. Gulev [20] and Hughes et al. [21] reported
that mobile monitoring captures more of the actual variance that exists in the atmosphere
compared to stationary monitors that are limited in their ability to capture spatial vari-
ance. Spatial variability of particulate matter was known to be higher than normal during
the Gulf oil spill [4,19]. Averaging is known to miss between-hour peaks that are health
significant [16,22,23]. At the time of the disaster, the existing air monitoring network in
Southeast Louisiana—the area closest to the oil spill—was not spatially representative of
the impacted region and most of the air quality data produced was daily averaged from
stationary monitors [10,24].

Staniswalis et al. [16] mathematically analyzed daily averaged particulate matter data
from El Paso, Texas and found that the daily average statistic (in their case, daily PM10)
underestimated public health effects (i.e., mortality) because it did not account for large
variations within the 24-hour window. Yuval et al. [25] found that smaller time-averaged
sampling windows were more accurate in general. Conroy et al. [23] found that 24-hour
averaging windows for PM2.5 ignored important data in-between readings, and they
recommended using a mid-hour 24-hour averaging method (i.e., the “Conroy” average) to
resolve the problem. Evangelista [26] reported that even under controlled conditions, there
can be tremendous amounts of error in ambient air data, so averaging is commonly used
to eliminate errant peaks. It is not clear which averaging or monitoring approach better
estimates the complex interactions between ambient concentrations, human exposure, and
public health [27].

Atmospheric monitoring directly over the spill by NOAA research aircraft discovered
that, in addition to expected sources of primary particulate matter, volatile hydrocarbon
emissions from floating oil were converted to massive amounts of secondary aerosols of
ultrafine particle size (<0.1 micron), and these particles were transported northwest across
Southeast Louisiana (130 miles) and as far north as Jackson, Mississippi (300 miles) [4,28].
Middlebrook et al. [4] estimated that over 90 percent of the particulate mass associated with
the Gulf oil spill was in the fine and ultrafine size ranges. Spatial and temporal variability
increases as particle size gets smaller, suggesting that smaller averaging periods (or more
frequent sampling) would be needed to analyze fine and ultrafine particle pollution [29–33].
Current regulatory standards ignore ultrafine particles [29] and presume that spatial
variability is negligible. The volatile organic compounds (VOCs) emitted from the spill are
not typically regulated unless a state can demonstrate that VOC emissions are a significant
contributor to the formation of PM2.5 [8].

Kaiser [22] reported that even very short-term exposure to poor air quality could have
life-changing health effects for vulnerable population groups, suggesting that the 24-hour
averaging period was too large. Ross et al. [34] recommended combining stationary and
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mobile data to maximize spatial-temporal resolution in assessing overall public health
impacts. Staniswalis et al. [16] found that daily averaged particulate matter was not
granular enough to show a statistically significant relationship to mortality, and that the
lack of information about acute exposures was particularly sensitive to particle constitution.
Di et al. [13] found a statistically significant relationship between elder mortality and
fine particulate matter spikes (known as short-term increases, STI) at a national scale (the
United States), while Kim et al. [15] found a similarly strong relationship between elder
mortality and coarse particulate matter at the megacity scale (Seoul, South Korea). Peres
et al. [35] confirmed a strong statistical association between Gulf oil spill emissions and
physical health symptoms among women in the region, both residents and workers.

The main points from the literature are: (1) particulate matter is a spatiotemporal
variable, (2) the variability of PM2.5 in the atmosphere was higher during the Gulf oil spill
than normal, (3) there was a higher fraction of fine and ultrafine particulate matter during
the Gulf oil spill, (4) stationary monitoring of particulate matter ignores spatial variability,
(5) hourly and daily averaging can miss acute exposures and significantly underestimate
health impacts, (6) mobile monitoring that produces spatiotemporally representative results
is likely more accurate for fine particle sizes, and (7) measurable public health impacts
were caused by the oil spill.

There are few published studies that make use of the Gulf oil spill PM2.5 dataset,
which comprises over 100,000 spatiotemporal readings taken throughout the Southeast
Louisiana, USA region impacted by the spill. The current literature neither analyzes deaths
associated with fine particulate matter in oil spill disasters, nor does it analyze whether
spatiotemporal data better represents PM2.5 variability in a disaster. This paper contributes
to both research gaps.

2. Materials and Methods
2.1. Study Area, Population, Timeframe, and Methods

Six parishes in Southeast Louisiana were selected as the study area: Jefferson, Lafourche,
Orleans, Plaquemines, St. Bernard, and Terrebonne. This study area will be variously called
the six-parish area or the six-parish region. This 3923 square-mile region was selected
because it was located closest to the site of the oil spill (as close as 38 miles), it had the
largest exposed population, and it was well sampled throughout the disaster by a variety
of monitoring methods. A study population consisting of persons aged 65 and over was
selected because of their sensitivity to air pollution. The leading causes of death in this
population group are heart disease, cancer, and chronic lower respiratory disease [36].

The study period spans from 15 May 2010 to 21 December 2010. These nearly eight
months represent the core period of disaster activities, including emissions from the oil
spill, gas flaring, in situ burning, and increased emissions from vehicles and boats. It
accounts for the time before and after the well was unsuccessfully capped in July 2010,
and it includes the period after the well was permanently capped in September 2010. The
location of the study area is shown in Figure 1. Table 1 provides general information about
the study area, including land area and population.

Numerous statistical procedures will be employed throughout the paper to analyze
multiple PM2.5 datasets. These include various algorithms to determine normality, to
determine the degree of variability, to analyze statistical association, etc. All the methods
used, including the names of the datasets, are summarized in Table 2. The results of
applying these methods will appear throughout the paper with additional explanation of
the results.
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enhancements by Angel Torres.

2.2. Mobile Data and Instruments

While the paper will compare several different sets of oil spill monitoring data, the
main dataset selected for this paper was BP’s “emergency-mobile-regional” PM2.5 dataset
for the Southeast Louisiana region, which is available to the public [6]. This dataset was
selected because of the long duration of mobile monitoring, wide spatial coverage, and
large sample size. This mobile monitoring data is a spatiotemporal dataset that was only
taken during the Gulf oil spill. BP traveled routes through the region taking air quality
readings over a cumulative total of approximately 90,000 miles within the study area (see
Figure 1). BP’s mobile monitoring vehicles were outfitted with portable nephelometers. The
primary model used was the TSI SidePak Personal Aerosol Monitor (AM-110) instrument
with cyclone. Used less frequently were the Dust Trak DXR and UltraRAE nephelometers.
BP’s quality assurance and data management methods are described elsewhere in their
Data Publication Summary Report [6] and in EPA’s Quality Assurance Sampling Plan for
the British Petroleum Oil Spill [9]. All data were gathered with Federal Reference Methods
(FRM) or Federal Equivalent Methods (FEM) [38].

2.3. Humidity Adjustments

There are many factors that explain different outcomes between instrument types.
Gravimetric samples continuously capture particles on a filter, nephelometer readings
capture the degree of light scattered per second across the particles, and beta-attenuation
readings capture the continuous absorption of radiation onto the particles [31]. The impact
of humidity on these three instrument types is widely appreciated because particle size
increases as the air becomes moist, thus affecting the results [39].
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Table 1. General information about the study area.

Parish Land Area
(Square Miles)

Population
(2010 Census)

Adjusted Deaths
(May–Dec, 2010)

Jefferson 296 432,552 1353
La Fourche 1068 96,318 300

Orleans 169 343,829 559
Plaquemines 780 23,042 -
St. Bernard 378 35,897 -
Terrebonne 1232 111,860 222

Region 3923 1,043,498 2434
Note: Death count is for persons aged 65 and over, adjusted for the number of days monitored. Adjusted deaths
were approximately 90 percent of all deaths. The State of Louisiana and the CDC suppressed data for Plaquemines
and St. Bernard Parishes due to low population. Sources: [40–42]. All data is public use.

Table 2. Summary of methods used.

Methods Used LDEQ Data EPA Daily Data EPA Hourly
Data CDC Data BP Data

Context of monitoring regulatory emergency emergency research emergency
Monitoring type stationary stationary stationary model mobile
Monitoring location urban coastal coastal regional regional
Sample size (n) 600 869 1144 2472 101,262
Humidity calibration X
Trend evaluation (graphical
observation) X X X X X

Normality evaluation (histogram,
skew, kurtosis) X X X X X

Centrality evaluation (mean,
median) X X X X X

Variability evaluation (mean
absolute deviation, standard
deviation, seasonal variation)

X X X X X

Comparison of peaks (short-term
PM2.5 increases) X X X X X

Sampling frequency analysis
(samples per day compared to
mean absolute deviation)

X X X X X

Comparison of means (t-tests) X X
Comparison of variances (F-tests) X X
Comparison of probability
distributions (K-S tests) X X

Statistical power (Cohen’s D,
effect size r, Hedge’s G) X

Statistical relationship between
variables (linear regression,
multiple regression)

X

Multicollinearity analysis
(tolerance test, variance inflation
factor)

X

Abbreviations: LDEQ = Louisiana Department of Environmental Quality; EPA = US Environmental Protection Agency; CDC = US Centers
for Disease Control and Prevention; BP = British Petroleum. Note: Only core findings are discussed in the text and depicted in subsequent
tables and figures.

According to the EPA’s oil spill quality control plan [9], all PM2.5 data were controlled
for humidity immediately upon obtaining each reading in comparison to a gravimetric
sample. At the time, BP stated it was following EPA’s quality control plan, which applied
to all sampling and monitoring for the disaster. Four years later, BP issued a data summary
report that retroactively corrected for humidity, as follows:
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“Personal aerosol monitors used for measuring PM2.5 and PM10 are significantly
affected by humidity. At a relative humidity of 60%, the concentrations of PM2.5 and PM10
are overestimated by approximately 20%. At a relative humidity of 90%, the concentrations
of PM2.5 and PM10 are overestimated by approximately 200%. Users should be aware that
the relative humidity in the Gulf of Mexico region generally exceeds 60%; therefore, most of
the results in the dataset are affected. Historic humidity readings can be obtained from the
National Oceanic and Atmospheric Administration’s National Climatic Data Center.” [6].

Nephelometer overestimation typically begins at a humidity threshold of 60% [43–46]
and peaks at about 90% [47,48], which defines the range of adjustment. To adjust BP’s
PM2.5 data, historic humidity readings were obtained from NOAA [49] and all data points
were transformed using the Covert et al. [47] and EPA [48] relationship (see Figure 2).
This approach allowed more accurate adjustments because it extended the number of
comparisons in between 60% and 90%.
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2.4. Stationary and Modeled Data and Instruments

The stationary datasets available for comparison were: (1) Louisiana Department of
Environmental Quality (LDEQ) “regulatory-stationary-urban” data taken routinely with
permanent stationary gravimetric instruments and available to the public [10,24]; and (2)
EPA’s “emergency-stationary-coastal” data taken with stationary Met One E-BAM beta-
attenuation monitors only during the Gulf oil spill and available to the public [50]. A
third dataset was the Centers for Disease Control and Prevention’s (CDC) “research-model-
regional” results from its Downscaler Model for the period of the Gulf oil spill, developed
in collaboration with the EPA and available to the public [7].

A sample of these three datasets is presented in Figure 3 to facilitate a side-by-side
comparison to the mobile dataset. Figure 3 compares daily PM2.5 concentrations from
August 21 to 6 September 2010 in Jefferson Parish and Plaquemines Parish. This time-
frame was selected because it matched the dates of EPA’s hourly monitoring. All four of
the datasets follow the same general trend at varying concentration levels. The graphs
show that the CDC’s research-model-regional data and the LDEQ’s regulatory-stationary-
urban data are consistently lower (in concentration) and smoother (fewer peaks) than the
EPA’s emergency-stationary-coastal data and BP’s emergency-mobile-regional data. This
is appropriate because research models and regulatory monitors are designed to produce
normalized data for the purposes of predicting concentrations in locations without moni-
tors and for comparison with regulatory standards. The emergency monitoring was not
under these constraints; however, the EPA did follow conventional norms in establishing
stationary monitors with hourly or daily time-controlled readings. The EPA monitors in
Figure 3, however, were located along the coast and were positioned to capture any particu-
late matter blowing in from the spill, which might explain why they consistently produced
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the highest concentrations in concentrations in Figure 3. The BP emergency-mobile-regional
data primarily lies in between the other datasets.
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3. Results
3.1. Data Variability

Two of the four available datasets were limited either in coverage area, duration, or
number of samples. The LDEQ data only covered cities and took a total of 600 samples
(every 1st, 3rd, or 6th day over 7 months) using stationary monitors in five of the six
parishes, averaged on a 24-hour basis. The EPA data covered only the coastline and used
stationary monitors to take either hourly or daily readings with sample sizes of 1144
(hourly over 17 days) and 869 (daily over five months) for the six parishes combined. While
these two stationary datasets produced normalized data at points on the boundaries of
the impacted region (the coastal edge and the urban areas), the data were not spatially or
temporally representative of variability. For these reasons, these two datasets were deemed
insufficient for an analysis of the association between variability and mortality. The CDC
modeling dataset and the BP emergency dataset will be further assessed.

Figure 4 displays time series graphs of the BP emergency-mobile-regional data, cor-
rected for humidity (parish sample size ranges from n = 4,682 to n = 32,968). The mean
absolute deviation (MAD) ranges from 7.5 to 8.7 (overall MAD = 8.19), indicating high
dispersion, numerous peaks or outliers, and variability that could be difficult to model or
predict. Histograms confirmed that the distribution in each parish is log normal (skew-
ness ranging from 1.55 to 17.60, kurtosis ranging from 5.73 to 985.2). The raw dataset is
comprised of frequent, randomly timed readings that are spatially representative, with a rel-
atively large total sample size (n = 101,262) and comprehensive spatial coverage (3923 acres)
compared to the other datasets that were available. There are 4731 peaks above the 95th
percentile, likely caused by a combination of the conditions of the oil spill, spatial variation,
and unknown errors. However, the large sample size and approximately randomly timed
readings reduces the impact of unknown errors. The conditions of the oil spill and spatial
variation are part of the phenomenon that is represented by the dataset. Consequently,
peaks were not considered outliers and were not removed because removing them would
have distorted the results, as confirmed by Gorard [51] and Leys et al. [52]. Peaks were
part of the situation being studied and reflect the variability of the event. Therefore, the
median (13.60 µg/m3) was used instead of the mean to represent the central tendency.
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Further evidence of high variability in the BP emergency-mobile-regional dataset
can be seen by comparing peaks to exceedance days. For example, on 92 individual days
between May and December 2010, Jefferson Parish (n = 19,106) had 1006 readings exceeding
35 µg/m3. During this same period, there were only three days with concentrations
sustained enough to achieve a daily average that exceeded 35 µg/m3 (the daily National
Ambient Air Quality Standard, NAAQS). Mobile monitoring generated many peaks but
few consistently high concentrations, a pattern suggesting elevated short-lived peaks
as identified by Russell [53]. All six parishes followed this pattern. This is an important
finding because it confirms that a particulate matter distribution can simultaneously exhibit
extremes of variability without extremes in daily average concentrations.

Figure 5 reveals seasonal variation in PM2.5 concentration for all six parishes, with
increased concentrations in the spring and late summer/early fall. A similar pattern of
higher PM2.5 concentrations in spring and fall was observed by Russell [53] in Southeast
Texas. Chen et al. [54] found that seasonal variations in PM2.5 were associated with
increased deaths in China.
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3.2. Modeled versus Mobile PM2.5 Data

The Downscaler statistical model was developed by the CDC in collaboration with
EPA to predict PM2.5 concentrations in areas with low population and inadequate moni-
toring on the ground. The Downscaler model combines atmospheric model simulations
with direct measurements of air pollution taken by 4000 nationwide regulatory monitors
(including the LDEQ urban regulatory monitors). These results are part of the CDC’s
National Environmental Health Tracking Network and are available to the public for use
in environmental science and public health research [55]. Compared to the LDEQ and EPA
datasets, the CDC model was the only dataset representing the entire region over the full
duration of the disaster, with a robust sample size and more than one reading per day,
making the CDC model results the best matching dataset for comparison to the BP mobile
data. The model and mobile data were therefore directly compared.

When averaged by parish, the variability of the CDC’s research-model-regional distri-
bution was much lower than the variability of BP’s emergency-mobile-regional distribution.
An F-test on the variances confirmed a significant difference between the variances of the
two distributions (ρ = 0.06, accept H0). However, a paired two-sample t-test on the means
showed the means of the two distributions were equal (ρ = 0.39, two tail). Histograms
of the modeled data were normally distributed (skewness = 0.97, kurtosis = 1.15), and
the mobile data was normally skewed with a slightly high kurtosis (skewnes s = −1.44,
kurtosis = 2.37). Values for skewness and kurtosis between −1.96 and +1.96 are considered
acceptable to prove normal univariate distributions in MS Excel [56,57]. A Kolmogorov–
Smirnov two-sample test revealed that these two samples did indeed come from the same
distribution (D = 0.667, ρ = 0.143, α = 0.05). Overall, the comparison of parish averages
finds that the mobile and modeled datasets are statistically similar in terms of PM2.5 con-
centration in the six parishes; however, the two datasets are statistically different in terms
of variability [58].

Variability is the key difference between the modeled and mobile datasets. CDC’s
modeled data consisted of two to three readings per day, while BP’s mobile data provided
3.7 readings per hour on average [6]. A higher number of readings captures more vari-
ability. Public health researchers have discovered that variability in PM2.5—measured as
short-term increases of 10 µg/m3 or more—is directly associated with mortality in older
populations [13]. Table 3 compares short-term increases (STI’s) in PM2.5 for the modeled
and mobile data.
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Table 3. Comparison of centrality (mean, median) and variability (STI) in the modeled and mobile datasets, by parish and
for the region.

Modeled Data Mobile Data

Sample
Size, n

Mean
µg/m3

Median
µg/m3

Short-term
Increases STI

Sample
Size, n

Mean
µg/m3

Median
µg/m3

Short-term
Increases STI

Jefferson 403 13.03 13.03 3 19,106 15.97 13.50 1932
Lafourche 563 12.87 13.03 3 32,967 17.28 14.40 4290

Orleans 223 13.13 12.78 3 4681 17.45 14.50 722
Plaquemines 572 13.38 13.20 2 18,478 14.64 12.00 2029
St. Bernard 320 13.95 13.88 3 10,255 16.62 13.60 1140
Terrebonne 391 12.75 12.89 2 15,775 16.62 14.00 1477

Region 2472 13.22 13.18 16 101,262 16.39 13.60 11,590

Note: STI = short term increases in PM2.5 ≥ 10 µg/m3. Time period is May–December 2010. Sources: [6,7]. All data is public use.

Table 3 demonstrates that variability is negligible in the modeled dataset, resulting in
a trivial number of short-term increases (STIs). Despite the accuracy of the model data in
terms of concentration and overall trends, it was not designed to capture the many changes
in concentration that occurred in-between readings during the Gulf oil spill. In contrast,
the mobile data took many thousands of readings and recorded more of the short-term
increases that have been associated with death in older segments of the population. Using
the mobile data, the remainder of the paper will directly test this association in the context
of the Gulf oil spill.

3.3. Short-Term PM2.5 Increases and Mortality

The mobile dataset was analyzed for short term increases greater than or equal to
10 µg/m3 in preparation for analysis against mortality data. When the raw mobile data
was aggregated into 7-day increments (to correspond to the 7-day mortality data that
was available), it retained relatively high statistical power as indicated by a large Cohen’s
D (1.939 > 0.8), a large effect size r (0.696 > 0.5); and a large Hedge’s G (1.833 > 0.8).
Weekly mortality data was obtained from the Louisiana State Office of Health Statistics. In
preparation for the analysis, deaths were counted proportionately based on the number
of sampling days per week so that deaths that occurred on days without sampling were
not included.

Researchers often incorporate a lag of one to five days between exposure and death,
depending on the cause of death being studied. Such studies commonly use model results
in which there are no missing data points, and many have access to daily mortality data.
Several limitations of this study precluded the use of a lag between exposure and death.
First, the data for this study are direct measurements of PM2.5 taken during a disaster.
There was no data on some days, and this was random not systematic. Second, the region
being studied has areas of low population so daily mortality data is not made available to
the public; only weekly data are available. Third, the region has inadequate air pollution
monitoring, and there is only one dataset available for analyzing correlations with mortality.
Due to these circumstances, a lag analysis was not performed. Seven days of lag would
likely be too long for all-cause mortality among persons 65 and older. A nationwide study
of this cohort by Di et al. [13] used same-day and one-day prior exposure metrics and
found high sensitivity and high mortality caused by exposure to PM2.5. This suggests that
a short lag time would be needed to identify these deaths, but daily mortality data was not
available so the question of lag time could not be addressed. Instead of adjusting deaths
to a constant lag time, deaths were adjusted for miscellaneous days on which sampling
did not occur, which amounted to 10 percent of all deaths during the study period. For
the reasons stated above, this adjustment was considered more critical to the outcome of
the analysis.



Atmosphere 2021, 12, 420 11 of 16

Ordinary least squares regression was performed using mortality data as the depen-
dent variable versus short-term increases in PM2.5 as the independent variable, first by
parish, then as multiple regression, and then disaggregated for the region. When analyzed
individually using simple OLS regression, each parish had a significant relationship at
the p < 0.05 level, but with small R-squared values ranging from 0.17–0.21, indicating a
high degree of unaccounted for variation. When analyzed using multiple OLS regression,
short-term particulate matter increases in all three parishes had a significant relationship
with mortality (p < 0.05) with a moderate correlation (R2 = 0.51). Multicollinearity among
the variables was checked by calculating tolerance levels and variance inflation factors
(VIF) based on cutoff values established by Hair et al. [59]. Tolerance levels varied from
0.71–0.83, all exceeding the standard minimum of 0.2. VIFs varied from 1.20–1.41, all
comfortably less than the maximum of 4.0. Therefore, the dataset did not have problems
with multicollinearity.

In the final OLS regression analysis, all the raw data was blended to represent the
region (i.e., not aggregated by parish). This run resulted in a strong statistically significant
relationship (p < 0.001) and a moderate R-squared (R2 = 0.43). The full results are summa-
rized in Table 4. There were positive, statistically significant relationships between PM2.5
and mortality no matter how the regression was done. Modeling the relationship at the
regional scale gave the best results.

Table 4. Association of All-Cause Mortality with Short-Term Increases in PM2.5.

OLS Regression n R R2 Adj. R2 SE β ρ 95% CI

Simple
Jefferson 31 0.46 0.21 0.18 14.37 0.1799 0.0096 ** (0.05,0.31)

Lafourche 33 0.44 0.19 0.16 3.485 0.0164 0.0113 * (0.00,0.03)
Terrebonne 26 0.41 0.17 0.13 3.248 0.0326 0.0326 * (0.00,0.06)

Multiple 33 0.71 0.51 0.46 16.09
Jefferson 0.1679 0.0443 * (0.01,0.33)

Lafourche 0.0632 0.0496 * (0.00,0.13)
Terrebonne 0.1868 0.0116 * (0.04,0.33)

Simple
Unaggregated 33 0.66 0.43 0.41 16.77 0.1046 3.53E-5 *** (0.06,0.15)

Note: alpha = 0.05. n = weeks sampled. All-cause mortality data is weekly, for persons aged 65 and over. Data for the remaining parishes
was insufficient because BP’s monitoring in Orleans Parish was much shorter than the other parishes, and because the CDC suppressed
mortality data for Plaquemines and St. Bernard Parishes due to low population. * p < 0.05; ** p < 0.01; *** p < 0.001.

The analysis shows that short-term increases in fine particulate matter significantly
and consistently predicted an increase in deaths throughout the study area from mid-May
to mid-December, 2010, but with only moderate correlation. The deaths analyzed were
all-cause deaths among people aged 65 and over in Jefferson, Lafourche, and Terrebonne
Parishes. The overall finding of the study is that at the regional scale, each short-term
increase of 10-µg/m3 or more of fine particulate matter was associated with a statistically
significant increase of 0.105 all-cause deaths (p = 3.53E-5) in people aged 65 and over. This
represents a 0.32% increase, which is in line with the findings of Kim et al. [15] who found
statistically significant associations ranging from 0.18–0.32% for different causes of death.

4. Discussion

The analysis revealed that mobile monitoring during disasters is a critical supplement
to existing stationary monitoring, which in Southeast Louisiana does not fully represent
spatial and temporal variability. The mobile monitoring made it possible to observe
frequent short-lived peaks for many consecutive months, data that was missed by the
other three datasets that were available during the disaster. This data gap was linked to
important public health risks, including mortality in sensitive groups.
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Emergency stationary monitors installed by EPA along the coast picked up the highest
PM2.5 concentrations coming in from the offshore spill. However, these daily and hourly
data lacked spatial resolution, and the hourly sampling was only operated for a brief 17-day
period, so both daily and hourly emergency datasets lacked the spatiotemporal resolution
needed to assess mortality. Daily PM2.5 concentrations were simultaneously gathered at
six regulatory monitors located in the urban centers and regulated by LDEQ. While these
data were continuous throughout the year, only daily averages were made available to the
public, and these failed to measure short term increases in between readings. The LDEQ
data were also stationary and therefore lacked spatial resolution. The CDC model provided
long term spatially integrated data, but with only two or three data points per day, which
again missed peaks in between readings. The analysis found that the CDC’s model results
aligned well with BP’s emergency monitoring data in terms of concentration and overall
trend; however, the modeled output was much less variable than the real-time data, so it
missed most of the short-term increases in PM2.5 that occurred during the disaster.

None of the usual monitoring in Southeast Louisiana made it possible to measure
the association between particulate matter and mortality because of the ways in which
monitoring was carried out, yet all the usual monitoring complied with National Ambient
Air Quality Standards. This suggests that the current regulatory regime tolerates particulate
matter deaths both during disasters and during normal times, and that current policies are
not health protective.

In response to the first research question, (1) Compared to other available data, was
spatiotemporal data better at representing PM2.5 variability during the Gulf oil spill?, eval-
uation of all available datasets during the Gulf oil spill confirmed that the spatiotemporal
mobile monitoring dataset was the only suitable dataset for analyzing PM variability. The
second research question, (2) Were deaths during the Gulf oil spill in people aged 65 and
over associated with PM2.5 variability?, was addressed using OLS regressions of mortality
versus short-term increases in PM2.5 within the study area and timeframe. The analysis
identified a statistically significant relationship between short-term increases of PM2.5 and
mortality in elders 65 and over, a finding that aligns with other recently published research
on mortality and fine particulate matter [13,15,60].

It is likely that BP’s mobile monitoring data contained too much unnecessary variation.
BP’s monitoring scheme took an 8-month average of 3.7 readings per hour over 89,982
linear miles and 31 readings per square mile. These are impressive numbers, but the low
R-squared values are likely due to excess variation in the data. One way to estimate this
would be to examine the relationship between sampling frequency and variability. The
datasets that averaged 2.2 readings per day (LDEQ, CDC, and EPA daily) measured a
limited amount of particulate matter variability, as indicated by an average mean absolute
deviation (MAD) of 4.4. In contrast, the datasets with a median of 2.4 readings per hour (BP
and EPA hourly) had a mean absolute deviation (MAD) of 8.9. Frequent monitoring leads
to more accurate variability, which facilitates the identification of short-term increases that
may be statistically associated with mortality. The EPA hourly monitoring frequency was
high enough to capture variability, but as mentioned previously, the two-week monitoring
duration did not catch enough short-term increases in PM2.5 to support a statistical analysis
with mortality. BP’s overall sampling frequency of 3.7 per hour, combined with its spatial
representation and long duration, ensured a full picture of PM2.5 variability and a robust
set of short-term increases that could be statistically analyzed against deaths. Based on
comparison with the other available datasets, mobile monitoring could have captured less
data and still obtained results adequate for showing the PM-mortality relationship. An
average sampling frequency of 2.4 readings per hour with a MAD variability of 7.5 or
higher may have been adequate. This is an interesting research question that deserves
further study.

From analyzing the other datasets that were taken at the same time and location as the
mobile dataset, it was apparent that daily and hourly readings were not frequent enough,
and that the two-week coastal monitoring period needed to be much longer. The lack of
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spatial variation was also problematic. In the conventional monitoring regimes examined in
this research, too much particulate matter variation went unmonitored and the monitoring
results that were obtained were unable to identify statistically significant associations with
mortality. The computer modelling that was produced by the CDC using conventional
data produced only a couple of concentration values per day and these results, while
valuable for tracking concentration, stopped short of providing insights into variability,
which causes death. In contrast, the mobile monitors had the advantage of taking nearly
random readings rather than on-the-hour readings, and because of the long duration of
monitoring it produced a quasi-random sample, which was more representative of what
the population actually breathed.

This research has exposed a number of gaps in knowledge that can be addressed in
future research: (1) what is the ideal monitoring rate (readings per hour) for capturing
an effective amount of variability?; (2) what is the minimum duration of monitoring to
capture enough data to support a statistical comparison to public health data?; and (3) is
the body of evidence—including this and many other papers on the subject—persuasive
enough to make air pollution regulations more protective of public health?

5. Conclusions

During the Gulf oil spill, fine particulates traveled into a region containing a large
population known to have disproportionately high underlying disease burden [61]. These
emissions affected air quality on a regional basis. The most likely PM sources were
vehicle emissions caused by increased car, truck, and boat traffic during the disaster,
controlled burns for reducing floating contaminants, direct emissions from the oil spill,
and secondary generation of aerosols from the oil spill (precursors). These sources did not
create consistent emissions from a single location or of a single type; rather, they produced
transient emissions from multiple sources and created multiple points of exposure. These
conditions led to increased variability in PM2.5 during the disaster, as demonstrated by the
spatiotemporal monitoring analyzed in this paper. Routine regulatory monitoring, and
emergency monitoring based on routine monitoring norms (i.e., hourly or daily readings,
stationary monitors, short durations, normalization of data), failed to recognize variability
that was linked to public health. Computer models that followed these same norms were
unable to represent variability.

This paper has demonstrated that short term increases in PM2.5 were associated with
all-cause mortality in people over the age of 65 in the region impacted by the Gulf oil spill.
These findings have implications for environmental policy and for disaster management.
In the case of the Gulf oil spill, this paper has demonstrated the importance of capturing
spatial and temporal dimensions in ambient air monitoring. When emissions are not
controlled or predictable, such as during a disaster, spatially and temporally integrated
monitoring at frequencies greater than once per hour and for long durations are essential
for capturing data relevant to public health. Spatiotemporal approaches to monitoring and
modelling can reveal far more of the variability that exists during air pollution disasters
and can be a robust source of data for understanding the impacts of fine particulate matter
on mortality.
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