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Abstract

Objectives: Acute kidney injury (AKI) is a malady with a
sudden onset resulting in buildup of waste matters in the
body, but a specific cure hasn’t been found as a lasting
solution to AKI. In this study, ramipril was evaluated for its
potential therapy in glycerol-induced AKI in rats.
Methods: Twenty animals were divided into four groups of
five animals each. Group I was the control while group II was
given glycerol on day 8 only, groups III and IV were admin-
istered with pioglitazone (reference drug) and ramipril for
seven days respectively and on day 8 received glycerol. On
the ninth day, blood and tissue samples were taken to
assay for serum indicators of oxidative damage, enzymatic
and nonenzymatic antioxidants, and creatinine and blood
urea nitrogen. Animals were sacrificed thereafter; kidney
was harvested for histological and immunohistochemical

analysis. Expressions of caspase 3, renin receptor, NK-KB,
and KIM-1 were carried out.
Results: Ramipril significantly inhibited indicators of
oxidative damage while also significantly increasing levels
of enzymatic andnonenzymatic antioxidantmarkers. These
drugs also significantly lowered the levels of creatinine and
blood urea nitrogen. Histology also indicated that while
thereweremassive infiltrationof leucocytes andcongestion
of the kidney in toxicant group, the ramipril-treated group
showed a milder condition. In immunohistochemistry, the
two drugs significantly inhibited the expressions of the four
proteins, which were highly expressed in the toxicant
group.
Conclusions: The study showed that ramipril and piogli-
tazone have nephroprotective effect and thus have the
ability to blunt AKI through their anti-inflammatory, anti-
apoptosis, antirenin, and antioxidant properties.

Keywords: acute kidney injury; oxidative stress; ramipril.

Introduction

Acute kidney injury (AKI) formerly known as acute renal
failure (ARF) is an abrupt incidence of kidney damage that
occurs within a few hours or a few days. AKI results in an
accumulation of waste products in the blood, thus making
it hard for the kidney to maintain fluid homeostasis in the
body. It affects other organs such as the heart, brain, and
lungs [1]. About 33–50% potential complications of AKI
occurred in patients affected by both traumatic and non-
traumatic rhabdomyolysis. This is the major cause of their
mortality [2–4]. The pathogenesis of AKI has to do with the
upturn of myoglobinemia, leading to constriction of the
arteries and the subsequent accumulation of myoglobin
and uric acid within the lumens of renal tubules, resulting
in tubular necrosis and obstruction. The overall effect is a
decrease in the glomerular filtration rate (GFR) and the
formation of AKI [2–5].
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The damage of renal tubules is a pathological feature
of AKI. Presently, animal models of glycerol-induced AKI
are generally used [6]. Upon administration of glycerol
injection into the muscle, myoglobin and some other
muscle contents are released into the blood stream, even-
tually causing AKI. Research has shown that the patho-
genesis of glycerol-induced AKI involves myoglobin
toxicity [7–9], reactive oxygen species (ROS) [10–12],
inflammation [13], apoptosis [14, 15], and redox-active iron
[12]. Despite the complexity of the pathogenesis of
AKI, recuperation can be promoted via timely prophylactic
and/or early therapeutic interventions [10, 15, 16]. It has
been suggested that renal vasoconstriction, tubular
obstruction, and directmyoglobin-induced cytotoxicity are
the main mechanisms involved in AKI [3, 17]. Oxidative
damage has also been incriminated in the pathogenesis of
this condition [17–19].

Pioglitazone, which works on reversing almost all
mechanisms involved in the pathogenesis, was suggested
as a preventive option in some studies [20, 21]. Some
studies have also indicated its renoprotective effects in
other nephropathy models [22–24]. Pioglitazone is an oral
antidiabetic agent and is classified as a peroxisome
proliferator-activated receptor-gamma (PPAR-γ) agonist
(amember of thiazolidinediones), which binds to a specific
site on the DNA helix. It participates in the control of
transcription of numerous target genes and thus partici-
pates in the regulation of several vital processes such as
adipocyte differentiation and also lipid and carbohydrate
metabolism [20, 21]. In this study, pioglitazone is used as a
reference drug and the renoprotective effect of ramipril was
compared with that of pioglitazone.

Ramipril, an angiotensin-converting enzyme (ACE)
inhibitor, is metabolized to its active form, ramiprilat, in
the liver and to a little extent in the kidneys [25]. Ramipril at
is an effective and competitive inhibitor of ACE. This
enzyme is responsible for the conversion of angiotensin I
(ATI) to angiotensin II (ATII) [26]. ATII, which is an
essential part of RAAS, can be used to control blood pres-
sure [27]. The drug, ramipril, may find its usefulness in the
treatment of hypertension, congestive heart failure, and
nephropathy. It could also be used to reduce the rate of
death, stroke, and myocardial infarction in individuals
suffering from cardiovascular problems [28]. Ramipril
(Altace), an ACE inhibitor, has been used to reduce the
relative risk of stroke. It is used other than its original
function and this is termed drug repurposing.

It should be noted that ARF management is mainly
supportive, but renal replacement therapy (RRT) may be
the best course [29]. Regardless of RRT, mortality in
patients with AKI is still high largely due to the severity of

the disease or the adverse effects of RRT [30]; hence use of
drug of ACE inhibitor class may be of help in this study.

Materials and methods

Animals

Albino rats ranging in weight between 130 and 220 g were kept at the
experimental animal holding of the Faculty of Veterinary Medicine,
University of Ibadanwhere theywere accommodated in rats’ cages and
fed with accepted rats’ feed. They had access to clean water ad libitum.
They were maintained at room temperature (25 °C). They were allowed
to adapt to their new environment for 2 weeks prior to the commence-
ment of induction and treatment. Rats were kept under constant
conditions (temperature 25 ± 3 °C and humidity 50%) with 12/12 h light/
dark cycles. All experimental procedures were in conformity with the
University of Ibadan Ethics Committee on Research in Animals with the
institutional approval number as UI-ACUREC/17/0064. Animals were
selected into four groups of five animals per group as follow:

Group A: Untreated control group: Animals were not induced but
were given distilled water for a period of 8 days, and so they served as
normal control group. Group B: Toxicant group: Animals were given
distilled water for 7 days, but on the day 8, acute kidney injury was
induced by administering glycerol at 4 mL/kg at a 50% dilution rate
(double dilution). Group C: Pioglitazone-treated group (reference
drug): Animals were treated using pioglitazone at 25 mg/kg for a
period of 7 days and were induced using glycerol at 4 mL/kg on the
eighth day. Group D: Ramipril-treated group: Animals were treated
using ramipril at 1mg/kg for 7 days andwere induced using glycerol at
4 mL/kg on the eighth day.

Blood sample collection

On the ninth day, blood samples were obtained through the retro-
orbital venous plexus into clean heparinized tubes, and the serum
samples obtained were collected into plain bottles and were rapidly
centrifuged at 4000 revolutions per minute (rpm) for fifteen (15) min.
Biochemical parameters such as serum creatinine, serum urea, mye-
loperoxidase, total protein, and xanthine oxidase and nitric oxide
were analyzed thereof. After blood sample collection, the animals
were euthanized by cervical decapitation after which kidneys from all
the animals were harvested and kept in the freezer for further
biochemical assays.

Renal homogenate preparation

The harvested kidneys were quickly removed, weighed, and perfused
immediately with normal saline and homogenized in cold potassium
phosphate buffer (0.1 M, pH 7.4) at 10000 rpm for 15 min, the
homogenate was cold centrifuged at 4 °C to obtain post mitochondrial
fraction (PMF). It was the supernatant obtained that was used to assay
for total protein, reduced glutathione (GSH) levels, glutathione
peroxidase (GPx), glutathione transferase (GST), superoxide dismut-
ase (SOD), total thiol, nonprotein thiol (NPT), advanced oxidative
protein product (AOPP), hydrogen peroxide (H2O2) generation,
malondialdehyde (MDA) content, and protein carbonyl (PC).
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Biochemical assays

Renal markers of oxidative stress: The method of Wolff [31] was used
to determine the hydrogen peroxide generation with the reaction
mixture subsequently incubated at room temperature for 30 min.
While themixtureswere read at absorbance at 560 nm,H2O2 generated
was extrapolated from H2O2 standard curve. The MDA content was
quantified according to the method of Varshney and Kale [32]. The
absorbance wasmeasured against a blank of distilled water at 532 nm.
Calculation of lipid peroxidation was with a molar extinction coeffi-
cient of 1.56 × 105/M/cm. Using themethod of Reznick and Packer [33],
PC contents in the renal tissues weremeasuredwith the absorbance of
the sample measured at 370 nm. Based on the molar extinction coef-
ficient of DNPH (2.2 104 cm1 M1), the carbonyl content was calculated
and expressed as nmoles/mg protein. The AOPP contents were as
determined by Kayali et al. [34]. In this study, 0.4 mL of renal PMFs
were treated with 0.8 mL phosphate buffer (0.1 M; pH 7.4), and the
absorbance of the reaction mixture was immediately recorded at
340 nmwavelength. Using the extinction coefficient of 261 cm−1 mM−1,
the content of AOPP for each sample was calculated and the results
were expressed as µmoles/mg protein.

Renal antioxidant markers: The SOD assay, reduced GSH estimation,
GPx activity, GST estimation were all carried out by the method of
Oyagbemi et al. [35]. The protein thiol (PT), NPT contents and protein
concentration were determined as described by Omobowale et al. [36].

Determination of serum markers of renal damage:While the method
of Olaleye et al. [37] was used to measure the serum nitric oxide
concentrations at 548 nm, the determination of the serum myeloper-
oxidase (MPO) activity was carried out according to the method of Xia
and Zweier [38].

Renal function tests: The determination of blood urea nitrogen (BUN)
and creatinine in this study was carried out using Randox kits in line
with manufacturer’s instructions.

Histopathology: Kidneys from all four groups were fixed in 10%
neutral buffered formalin and processed to paraffin wax. The kidneys
were sectioned longitudinally in two halves and were kept in 10%
neutral formalin solution. The sectionswere stainedwith hematoxylin
and eosin and were observed under a light microscope [39].

Immunohistochemistry

The expression of kidney injury molecule I (KIM-1), caspase 3, renin
receptor, and nuclear factor kappa beta (NF-κB) in the kidney, using
immunohistochemistry, was as described by Oyagbemi et al. [40]. The
kidney tissues obtained from buffered formalin perfused rats were
paraffin embedded and then used for immunohistochemistry. Paraffin
sections were melted at 60 °C in the oven, but the dewaxing of the
samples in xylene was followed by passage through decreasing con-
centrations of ethanol (100–80%). Peroxidase quenching in 3% H2O2/
methanolwas carried outwith subsequent antigen retrieval performed
by microwave heating in 0.01 M citrate buffer (pH 6.0) to boil.
Detection of bound antibody was carried out using biotinylated (goat
antirabbit, 2.0 μg/mL) secondary antibody and, subsequently, strep-
tavidin peroxidase (horseradish peroxidase–streptavidin) according
to the manufacturer’s protocol (HistoMark®, KPL, Gaithersburg, MD,
USA). Diaminobenzidine (DAB, Amresco®, USA) was used to enhance
the reaction product for 6–10 min and counterstained with high-
definition hematoxylin (Enzo®, NY, USA) and was thereafter dehy-
drated in ethanol. Once the slides were covered with cover slips, they
were sealed with resinous solution. The immunoreactive positive
expression of Kim-1 and NF-κB antirabbit intensive regions were
viewed starting from low magnification on each slice then at 400×
magnifications.

Data analysis

All values were stated as mean ± S.D. One-way analysis of variance
(ANOVA) with Tukey’s post-hoc test was carried out using Graph Pad
Prism version 4.00.

Results

Results from this study show that ramipril and pioglitazone
(reference drug) significantly increased the levels of renal
nonenzymatic antioxidants i.e., NPT, PT, vitamin C, and
reduced GSH. These results are also comparable to that of
group A (Table 1).

Table 2 shows the effects of ramipril on renal enzy-
matic antioxidants. In this instance, SOD, GST, and GPx all
experienced significant increase when compared to the

Table : Effects of ramipril and pioglitazone on renal nonenzymatic antioxidant markers in glycerol-induced acute kidney injury.

Parameters A B C D

NPT . ± . . ± .a
. ± . . ± .a

PT . ± . . ± .a
. ± .b

. ± .a,b

Vitamin C . ± . . ± 
a

. ± .a,b
. ± .a,b

GSH . ± . . ± . . ± . . ± .

Values expressedasmean±S.D.GroupA (normal control), GroupB (glycerol atmL/kg), GroupC (pioglitazoneatmg/kg+glycerol atmL/kg),
and Group D (glycerol at mL/kg + ramipril at mg/kg) at α<.. GSH (reduced glutathione; µmol/mg protein), NPT (nonprotein thiol; µmol/mg
protein), PT (protein thiol; µmol/mg protein), Vit C (vitamin C; µmol/mg protein), aIndicates significant difference when compared with Group A,
bIndicates significant difference when compared with Group B.
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toxicant group. While the results of SOD for ramipril and
pioglitazone were comparable to that of group A, for GST
and GPx, the group A results showed a significant differ-
ence when compared to the results for the two drugs.

In Table 3, the effect of ramipril and pioglitazone
on renal markers of oxidative stress i.e., PC, hydrogen
peroxide, and MDA was that of significant decrease when
compared to that of the toxicant.

The effect of pioglitazone and ramipril on serum
markers of inflammation (myeloperoxidase and nitric
oxide) levels is shown in Figure 1. While the two drugs
caused significant decrease in the level ofmyeloperoxidase
when compared to the toxicant group, reverse is the case
for the nitric oxide where the tested agents caused signif-
icant increase in the level of this marker compared to that
of the toxicant.

In Figure 2, the effect of pioglitazone and ramipril on
serum urea and creatinine levels showed that there was a
significant decrease in the levels of these biomarkers when
compared to that of the toxicant group.

Figure 3 showed the effect of pioglitazone and ramipril
on serum AOPP level where ramipril and pioglitazone
caused a significant decrease in the level of this product.

In Figure 4, histology of the kidney (X400), stainedwith
hematoxylin andeosin,was shown.WhileGroupA (distilled
water alone) showsnormalmorphologyof the kidney tissue,
Group B (glycerol) shows zones of congestion, infiltration of
inflammatory cells, and degeneration of renal cells, Group C
(pioglitazone) shows areas of congestion, and Group D
(ramipril) also shows areas of congestion.

In Figure 5, the toxicant group (glycerol alone) caused
significant expression of Caspase 3 while ramipril and
pioglitazone caused significant inhibition of expression of
this protein. The effect of these drugs on the protein
expression is similar to that of the control.

Figure 6 showed that the toxicant group (glycerol
alone) caused significant expression of renin receptor
while ramipril and pioglitazone caused significant inhibi-
tion of expression of this protein. The effect of these drugs
on the protein expression is similar to that of the control.

Table : Effects of ramipril and pioglitazone on renal enzymatic antioxidant markers.

Groups A B C D

SOD . ± . . ± .a
. ± .a

. ± .a

GST . ± . . ± .a
. ± .a,b

. ± .a,b

GPx . ± . . ± .a
. ± .a

. ± .a,b

Values expressed asmean±S.D. Group A (normal control), GroupB (glycerol mL/kg), Group C (pioglitazone mg/kg+ glycerolmL/kg), and
Group D (glycerol mL/kg + ramipril mg/kg) at α<.. SOD (superoxide dismutase; µmol/mg protein), GST (glutathione-S transferase; mmol
-chloro-,-dinitrobenzene- GSH complex formed /mg protein), GPx (glutathione peroxidase; µmol/mg protein), aIndicates significant
difference when compared with Group A, bIndicates significant difference when compared with Group B.

Table : Effects of ramipril and pioglitazone on renal nonenzymatic markers of oxidative stress.

Groups A B C D

PC . ± . . ± .a
. ± .a

. ± .a,b

HO . ± . . ± .a
. ± .a

. ± .a,b

MDA . ± . . ± .a
. ± .b

. ± .b

Values expressed asmean±S.D. Group A (normal control), GroupB (glycerol mL/kg), Group C (pioglitazone mg/kg+ glycerolmL/kg), and
Group D (glycerol mL/kg + ramipril mg/kg) at α<.. PC (protein carbonyl; µmol /mg protein), HO (hydrogen peroxide; µmol/mg protein),
MDA (malondialdehyde; µmol/mg protein), aIndicates significant difference when compared with Group A, bIndicates significant difference
when compared with Group B.

Figure 1: Effect of pioglitazone and ramipril on serum markers of
inflammation (myeloperoxidase and nitric oxide) levels. Group A
(normal control), Group B (glycerol at 4 mL/kg), Group C
(pioglitazone at 25 mg/kg + glycerol at 4 mL/kg), and Group D
(glycerol at 4 mL/kg + ramipril at 1 mg/kg). aIndicates significant
difference when compared with Group A. bIndicates significant
difference when compared with Group B.
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The toxicant group (glycerol alone) caused significant
expression of KIM-1while ramipril and pioglitazone caused
significant inhibition of expression of this protein. The
effect of these drugs on the protein expression is more
pronounced even that of the control (Figure 7).

In Figure 8, the toxicant group (glycerol alone) caused
significant expression of NF-κB while ramipril and piogli-
tazone caused significant inhibition of expression of this
protein. The effect of these drugs on the protein expression
is similar to that of the control.

Discussion

Glycerol-induced renal damage in laboratory animals
closely mirrors rhabdomyolysis with the pathogenesis
involving reactive oxygen metabolites and others. On
the other hand, ischemia-reperfusion-induced ARF in
humans mimics the hemodynamic-induced changes in
renal function [41].

PC,H2O2, andMDA levelswere significantly elevated in
the toxicant group only while pioglitazone and ramipril
reduced their levels to almost as close as that of the control
group as seen in Table 3. The free radical species generated
by rhabdomyolysis in AKI promotes lipid peroxidation
leading to production of MDA [42]. The elevation in MDA
levels in the toxicant shows that glycerol could cause lipid
peroxidation with subsequent damage of macromolecules.

PCs are used as representative indicators of protein
oxidation and many diseases such as pancreatitis, Alz-
heimer’s disease, etc., are linked with it [43]. Pathogenesis
occurs by oxidation of glutamyl side chains; this leads to
the generation of a peptide in which the N-terminal amino
acid is blocked by an α-ketoacyl derivative [44].

Hydrogen peroxide has been said to exert its effect by
causing oxidation of thiol compound [45]. This is
confirmed by the reduced thiol levels as reported in this
study. Hydrogen peroxide is also changed to water and
oxygen by GPx.

Increase in AOPP contents is connected with oxidative
stress, inflammation, and acute renal damage [46]. The in-
hibition of oxidative stress by ramipril in this study indicates
that this drug not only inhibits angiotensin-converting
enzyme, but it also inhibits the production of free radicals
and ROS.

AKI is typified by a sudden decline in renal function,
demonstrated by a boost in serum creatinine levels [47]. A
significant elevation was seen in the urea and creatinine
levels of the toxicant only, while treatment with ramipril
and pioglitazone decreased these levels to almost that of
the control group. This result is comparable to that of
Higgins et al. [48]. Urea and creatinine are traditional
markers of renal damage, thus the elevation in urea and
creatinine levels in this study confirmed glycerol-induced
renal damage.

MPO is expressed mainly in neutrophils [49] and is
an important enzyme in inflammatory processes, thus
there is substantial proof that undue stimulation of
oxidant generation of this enzyme can lead to host tissue
damage [50]. Also, its proinflammatory effects have
made selective inhibitors of iNOS an anti-inflammatory
drug target [51].

Figure 3: Effect of pioglitazone and ramipril on serum advanced
oxidative protein product level. Group A (normal control), Group B
(glycerol 4mL/kg),GroupC (pioglitazone25mg/kg+glycerol 4mL/kg),
and Group D (glycerol 4 mL/kg + ramipril 1 mg/kg). aIndicates
significant difference when compared with Group A, bIndicates
significant difference when compared with Group B.

Figure 2: Effect of pioglitazone and ramipril on serum urea and
creatinine levels. Group A (normal control), Group B (glycerol at
4 mL/kg), Group C (pioglitazone at 25 mg/kg + glycerol at 4 mL/kg),
and Group D (glycerol at 4 mL/kg + ramipril at 1 mg/kg). aIndicates
significant difference when compared with Group A, bIndicates
significant difference when compared with Group B.

Adedapo et al.: Ramipril mitigates against acute kidney injury in rats 229



In this study, AOPP, urea, creatinine, NO, and MPO all
showed elevated levels in the toxicant group. However,
treatment with ramipril and pioglitazone (reference drug)
in the other groups reduced these levels to almost that of
the control group indicating the anti-inflammatory and
antioxidant effects of these drugs.

Thiol is an organosulfur compound that possesses
antioxidant and radical scavenging properties [52] with a

significant role in defense against ROS [53]. In this study,
there was a significant depletion in the levels of renal
protein and NPT in the glycerol alone group; however,
ramipril and pioglitazone elevated their levels to almost
the same as that of the control groups. There was no sig-
nificant difference in the NPT levels across the groups. The
pioglitazone-treated groups had their PT levels elevated to
almost the same level as the control. Thiol is an important

Figure 5: The toxicant group (glycerol alone)
caused significant expression of caspase 3
while ramipril and pioglitazone caused
significant inhibition of expression of this
protein. The effect of these drugs on the
protein expression is similar to that of the
control.

Figure 4: Histology of the kidney (X400),
stained with hematoxylin and eosin.
Group A (distilled water alone) shows
normal morphology of the kidney tissue.
Group B (glycerol) shows zones of
congestion, infiltration of inflammatory
cells, and degeneration of renal cells,
Group C (pioglitazone) shows areas of
congestion, and Group D (ramipril) also
shows areas of congestion.
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Figure 6: The toxicant group (glycerol alone)
caused significant expression of renin
receptor while ramipril and pioglitazone
caused significant inhibition of expression
of this protein. The effect of these drugs on
the protein expression is similar to that of
the control.

Figure 7: The toxicant group (glycerol alone)
caused significant expression of kidney
injury molecule-1 (KIM-1) while ramipril and
pioglitazone caused significant inhibition
of expression of this protein. The effect of
these drugs on the protein expression is
more pronounced even that of the control.
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intracellular agent, a potent reducing agent, which pro-
tects the tissue against destruction by free radicals. The
thiol depletion in renal tissues in this study thus proves
that glycerol exerts its damaging effect by depleting thiol
levels, thus exacerbating oxidative damage.

There was a significant lowering of the vitamin C levels
in the glycerol alone group, while the treated groups how-
ever had their vitamin C levels elevated to that of the control
group due to the ramipril and pioglitazone treatment.
Vitamin C is an important nonenzymatic antioxidant, which
protects the aqueous compartments in cells [54]. It acts
primarily by scavenging free radicals. In a previous study,
depletion in vitamin C levels in renal disease was reported
[55]. It could thus be seen that the ability of ramipril, an ACE
inhibitor, to enhance both enzymatic and nonenzymatic
antioxidant as shown in this work is an attestation to its
antioxidant property. Antioxidants prevent oxidation [56],
which is a chemical reaction that can generate free radicals
and subsequent chain reactions that may injure the cell
[57].SOD catalyzes the breakdown of the superoxide anion
into oxygen and hydrogen peroxide [58] while GSH’s anti-
oxidant property is due to its thiol group,which can serve as
reducing agent, thus acting to protect the body from
oxidation [59]. Because superoxide is a common ROS from
many processes, its dismutation by SOD is very essential in

each cell [60]. SOD acts by converting superoxide to the less
deleterious hydrogen peroxide. The detoxification mecha-
nismofROS is donebyGPx,GST. GPxhas been said to act by
inhibiting lipid peroxidases, thus supporting the concurrent
decrease in GPx plus increase in MDA levels seen in this
study. The significant increase in the level of the enzymatic
antioxidants as seen in this study further showed that
ramipril and by extension pioglitazone inhibit ARF due to
these facts. Therefore part of its renoprotective effect is due
to enhancement of enzymatic antioxidant, thus showing its
antioxidant effect.

Glycerol is reported to cause a decline in levels of SOD
and GPx [12]. In this study, SOD, GST, and GPx levels were
significantly lowered in the toxicant group. Ramipril and
pioglitazone, however, elevated their levels significantly
as seen in Table 2. This investigation showed that the GST
and GPx values in the toxicant groups were significantly
depleted indicating that glycerol administration brought
about oxidative stress. However, the elevation of SOD,
GST, and GPx levels in the ramipril and pioglitazone-
treated groups to almost the same as the control group is
an indication that these drugs have the ability to enhance
these enzymes, thus possessing antioxidant property. In
this study, glycerol caused nephrotoxic changes such as
zones of congestion, infiltration of inflammatory cells,

Figure 8: The toxicant group (glycerol alone)
caused significant expression of nuclear
factor kappa B (NF-KB) while ramipril and
pioglitazone caused significant inhibition
of expression of this protein. The effect of
these drugs on the protein expression is
similar to that of the control.
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and degeneration of renal cells in the kidney. The release
of muscle content into the plasma in rhabdomyolysis
leads to AKI through different mechanisms, such as
tubular damage associated with pro-oxidants production
[42]. Inflammatory cells infiltration, which was observed
in this study, has also been stated in other studies, and
this has been said to be an important mechanism of kid-
ney damage [16]. Pioglitazone, an antidiabetic classified
as PPARy agonist has been reported to have neph-
roprotective property, though its mechanism of action is
not yet fully known [6].

In this study, four biomarkers were explored using
immunohistochemistry to determine the nephroprotective
effects of ramipril in glycerol-induced AKI. These bio-
markers are: renin receptor, caspase 3, KIM-1, and NF-κB.
Renin receptor has been reported to contribute to the
pathogenesis of disease conditions such as fibrosis, AKI,
cardiovascular disease, diabetic microangiopathy, pre-
eclampsia, cancer hypertension, and obesity [61]. In this
study, ramipril along with pioglitazone caused a significant
inhibition of renin receptor. Renin receptor contributes to
AKI especially that evidence suggests that inflammation is a
crucial element contributing to the progression of AKI. It
means that indicators of inflammation are of interest in the
evaluation of AKI pathogenesis and prognosis [62]. The
ability of ramipril to inhibit renin receptor thereforewill halt
the progression of AKI.

Caspases are important for maintaining homeostasis
by controlling inflammation and cell death, but dysfunc-
tional caspases trigger several human diseases including
cancer and inflammatory disorders [63]. The role of cas-
pase 3 in mediating the destruction of cellular structures
gives it the name “executioner caspase” in apoptosis,
hence is therefore a useful tool in mechanistic in-
vestigations of new cancer drugs [64]. In this study, ram-
ipril caused significant inhibition of caspase 3; thus the
drug acted through their antiapoptotic anti-inflammatory
properties to blunt AKI in rats. The effect of ramipril on
caspase is similar to that of pioglitazone, the reference drug
used in this study.

KIM-1 is an indicator for quick discovery of AKI,
because its level is considerably elevated within hours
following kidney injury [65], but low expression is seen in
normal kidneys but high in proximal tubule cells following
AKI [66]. In this study, ramipril caused significant inhibi-
tion of KIM-1 indicating the ability of this drug to bring
about nephroprotection, hence preventing kidney injury is
one of the basis for its ability to mitigate against AKI. In
fact, the effect of ramipril on KIM-1 is a bit more pro-
nounced than that of pioglitazone in this study. Since
timely diagnosis of AKI is still a challenge, the need to

search for new biomarkers other than serum and creatinine
becomes imperative. Khreba et al. [67] in their studies
concluded that urinary KIM-1 could be used as simple
noninvasive and specific biomarker for prompt diagnosis
of AKI. In this study, the authors also agree with this
postulation; thus efforts should be made at deploying
KIM-1 and other biomarkers to make early detection of this
diseased condition i.e., AKI.

The other protein evaluated in this study is NF-κB that
influences not only immunity, but also inflammation, can-
cer, etc. [68–70]. NF-κB regulates gene expression – both
negatively and positively [71], and it has also been shown
that NF-κB signaling mediates several inflammatory pro-
cesses [72–74]. In other words, NF-κB signaling is involved
in inflammation; thus its significant inhibition in this study
by ramipril is a pointer to the ability of the drug to mitigate
inflammation and possible negative gene expression that
this protein expressed. Ramipril also appears to exert more
effect on NF-κB signaling pathway than pioglitazone, the
reference drug.

Conclusions

Taken together, this study thus showed that ramipril in
comparison to pioglitazone, the reference drug used in the
study, both have nephroprotective effect and thus have the
ability to blunt AKI through their anti-inflammatory, anti-
apoptosis, antirenin, and antioxidant properties.
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