
Texas Southern University Texas Southern University 

Digital Scholarship @ Texas Southern University Digital Scholarship @ Texas Southern University 

Faculty Publications 

7-1-2021 

Exact Christoffel-Darboux expansions: A new, multidimensional, Exact Christoffel-Darboux expansions: A new, multidimensional, 

algebraic, eigenenergy bounding method algebraic, eigenenergy bounding method 

Carlos Handy 
Texas Southern University, carlos.handy@tsu.edu 

Follow this and additional works at: https://digitalscholarship.tsu.edu/facpubs 

 Part of the Physics Commons 

Recommended Citation Recommended Citation 
Handy, Carlos, "Exact Christoffel-Darboux expansions: A new, multidimensional, algebraic, eigenenergy 
bounding method" (2021). Faculty Publications. 14. 
https://digitalscholarship.tsu.edu/facpubs/14 

This Article is brought to you for free and open access by Digital Scholarship @ Texas Southern University. It has 
been accepted for inclusion in Faculty Publications by an authorized administrator of Digital Scholarship @ Texas 
Southern University. For more information, please contact haiying.li@tsu.edu. 

https://digitalscholarship.tsu.edu/
https://digitalscholarship.tsu.edu/facpubs
https://digitalscholarship.tsu.edu/facpubs?utm_source=digitalscholarship.tsu.edu%2Ffacpubs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=digitalscholarship.tsu.edu%2Ffacpubs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalscholarship.tsu.edu/facpubs/14?utm_source=digitalscholarship.tsu.edu%2Ffacpubs%2F14&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:haiying.li@tsu.edu


Exact Christoffel-Darboux Expansions: A New,

Multidimensional, Algebraic, Eigenenergy Bounding

Method

Carlos R. Handy

Department of Physics, Texas Southern University, Houston, Texas 77004

E-mail: carlos.handy@tsu.edu

Abstract. Although the Christoffel-Darboux representation (CDR) plays an

important role within the theory of orthogonal polynomials, and many important

bosonic and fermionic multidimensional Schrodinger equation systems can be

transformed into a moment equation representation (MER), the union of the two

into an effective, algebraic, eigenenergy bounding method has been overlooked. This

particular fusion of the two representations, suitable for bounding bosonic or fermionic

systems, defines the Orthonormal Polynomial Projection Quantization - Bounding

Method (OPPQ-BM), as developed here. We use it to analyze several one dimensional

and two dimensional systems, including the quadratic Zeeman effect for strong-

superstrong magnetic fields. For this problem, we match or surpass the excellent,

but intricate, results of Kravchenko et al (1996 Phys. Rev. A 54 287) for a broad

range of magnetic fields, without the need for any truncations or approximations.

PACS numbers: 03.65.Ge, 02.30.Hq, 03.65.Fd
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1. Introduction

It is well recognized that the development of effective bounding methods for generating

tight (converging) lower and upper bounds to the discrete state energies is an important

problem. This is because many systems, particularly those exhibiting strong coupling

interactions, involve significant multiscale dynamics mandating the use of singular

perturbation methods [1]. These specialized methods, including the adapation of

conventional methods (i.e. large order nonorthogonal basis expansions, large order

perturbation resummation analysis, asymptotic analysis, etc.), may yield varying and/or

inaccurate results, motivating the need for tight bounds by which to gauge the reliability

of competing estimation methods.

Many important, low dimension, Schrodinger equation eigenenergy problems are

transformable into a moment equation representation (MER). That is, their power

moments will satisfy a linear recursion relation with the energy as a parameter.

Within this context, the Eigenvalue Moment Method (EMM) [2-4] was developed by

Handy et al, and proved to be an effective eigenenergy bounding method, generating

geometrically converging bounds, for strongly coupled systems such as the quadratic

Zeeman effect for strong - superstrong magnetic fields [3-7]. However, since the

method depends on positive, or nonnegative, configuration space representations for

the discrete states [2-4,8-10], and exploits the well known positivity theorems arising

from the Moment Problem in mathematics [11], it is presently limited only to solving

for the multidimensional bosonic ground state. Presently, EMM cannot be extended to

multidimensional excited bosonic states, or fermionic systems. Additionally, the EMM

algorithms are based on the use of convex optimization methods such as semidefinite

programming (SDP) [12,13] and linear programming [3,4,14], which are not traditional

mathematical techniques within physics.

Despite the limitations of EMM, it has long been the objective to develop other

MER based bounding methods capable of addressing multidimensional excited bosonic

states and fermionic systems. In this we have been succesful, the focus of this work.

This advance is achieved through the realization that by embedding the Christoffel-

Darboux (basis) representation (CDR) [15] within a MER formulation, the expansion

coefficients can be generated in closed form, resulting in a bounding theory capable of

generating converging bounds for all discrete states. Furthemore, the computational

implementation is purely algebraic with no truncations or approximations. We refer

to this bounding formulation as the Orthonormal Polynomial Projection Quantization-

Bounding Method (OPPQ-BM).

Despite the present limitations of EMM, we expect it to be more efficient (i.e.

the same bounding accuracy using less power moments) than OPPQ-BM since it

focuses on the pointwise positivity of the bosonic ground state wavefunction, and not

just on the positivity of a particular integral expression. However, the computational

implementation of OPPQ-BM is far simpler than EMM, and can be done to (essentially)

arbitrary precision utilizing advanced algebraic software, such as Mathematica.
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The fusion of CDR and MER is not new. This was the essence of the eigenenergy

approximation formalism developed by Handy and Vrinceanu [16,17]. We shall refer to

this approach as the Orthonormal Polynomial Projection Quantization - Approximation

Method (OPPQ-AM). Despite its effectiveness as an estimation method, it overlooked

the fact that its basic structure, when viewed from a different analytical perspective,

leads to a converging, eigenenergy, bounding method.

In Sec. 2, we provide an overview of the essential structure of the OPPQ-BM

formalism. Approximately half of this is a review of the OPPQ-AM formalism, upon

which OPPQ-BM is partly based. This is followed by implementation of OPPQ-

BM on the quantum harmonic oscillator (Sec. 3), the quartic anharmonic oscillator

(Sec. 4), and the two dimensional quadratic Zeeman problem (QZM) in Sec. 5.

The effectiveness of OPPQ-BM is vindicated by our ability to match and surpass the

eigenenergy estimates by Kravchenko et al [6] and Schimerczek and Wunner [7], for a

broad range of magnetic field strengths, through an algebraic procedure involving no

truncations or other approximations (i.e. B-splines, etc.). Additionally, we can generate

eigenenergy bounds to the ground and first excited states within the Lz = 0, even parity,

symmetry class (0+). Each problem illustrates the general structure of the formalism for

one and multidimensional systems. Interspersed within the specific examples, we provide

proofs, and other rationale, for important relations. In the Appendix, we provide those

important proofs not given in the earlier sections.
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2. Overview of the OPPQ-BM Formalism

The following overview pertains to the OPPQ-BM formalism, developed within the

context of a one space dimension formulation. The basic structure is unchanged for

multidimensional systems, unless noted otherwise.

One can skip to Sec. 3 and Sec. 4, for the harmonic oscillator and the quartic

anharmonic oscillator, respectively, which develop the underlyng formalism while solving

the corresponding problem.

2.1. Abbreviated Overview

For any one dimensional or multidimensional system, we have:

Step 1: Given the Christoffel-Darboux representation (CDR) for an unknown

discrete state wavefunction (Eq.1), and assuming the given quantum system admits

a Moment Equation representation (i.e. MER, Eq.(4)), we can generate the CDR

expansion coefficients in closed (exact) form (Eq.(5)).

Step 2: From the OPPQ-BM quantization condition in Eq.(12), we can generate a

purely energy dependent function, LI(E), whose asymptotic properties in the expansion

order “I” (Eq.(14)) lead to both the generation of eigenenergy estimates (i.e. Eq.(16),

different from OPPQ-AM), and converging eigenenergy bounds (Eqs.(21-22)). The

expression LI(E) results from a constrained quadratic form minimization (CQFM)

ansatz (i.e. Eq.(10)).

Step 3: For one dimensional systems, LI(E) = λI(E), corresponding to

the smallest eigenvalue of a certain positive definite matrix (Eq.(8)); whereas for

multidimensional problems the CQFM ansatz must consider alternative constraints to

those for one space dimension problems.

2.2. Comprehensive Overview

2.2.1. The Christoffel-Darboux Representation: Let R(x) > 0 be a positive,

exponentially decaying weight with finite power moments, w(p) =
∫

dx xpR(x). Let

Pn(x) =
∑n

j=0 Ξ
(n)
j xj be its orthonormal polynomials satisfying 〈Pm|R|Pn〉 = δm,n.

Consider the decomposition of the discrete state wavefunction, Ψ, in terms of the non-

orthogonal basis {Pn(x)R(x)|n ≥ 0}:

Ψ(x) =
∞
∑

n=0

cnPn(x)R(x), (1)

where the projection coefficients are given by

cn = 〈Pn|Ψ〉, (2)

=
n
∑

j=0

Ξ
(n)
j µ(j), (3)

involving the power moments, µ(p) =
∫

dx xpΨ(x). The expansion in Eq.(1)

defines the Christoffel-Darboux representation (CDR), although Handy and Vrinceanu
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[16,17] referred to it as the Orthonormal Polynomial Projection Quantization (OPPQ)

representation.

In their eigenenergy estimation analysis, referred to here as the OPPQ-

Approximation Method (OPPQ-AM), it was argued that the better the weight is

modeled after the asymptotic form of the physical states, the faster convergent will be

the CDR/OPPQ expansion in Eq.(1). This can involve the use of Freud type weights (i.e.

R(x) = exp(−γ x2q), etc.), and consideration of completeness issues. In their work on

the sextic anharmonic oscillator [16], the use of the Freud weight exp(−1
4
x4) produced

excellent results. In this work, we will use combinations of the classical orthogonal

polynomials; therefore completeness issues will not be of concern. We note that the

above basis {Pn(x)R(x)} is non-orthogonal; however, it is a linear combination of an

orthonormal basis formed from the orthogonal polynomials relative to the weight R2.

2.2.2. The Moment Equation Representation (MER): Assume that the physical

system admits a linear recursion relation for the power moments, of the form

µ(p) =
ms
∑

ℓ=0

ME(p, ℓ) µℓ, (4)

for p ≥ 0, where the initialization moments, otherwise referred to as the missing

moments, correspond to µℓ = µ(ℓ), for 0 ≤ ℓ ≤ ms. The coefficients, ME(p, ℓ), are known

functions of the energy, E, satisfying ME(ℓ1, ℓ2) = δℓ1,ℓ2. Many important physical

systems admit such moment equation representations (MER). For one dimensional

systems, ms = finite; while for multidimensional systems, ms = ∞, although the

missing moments define an infinite hierarchy of nested moment subspaces. That is,

given the first 1+ms missing moments, the quantum system is exactly projected within

the Ums
subspace; and a finite number of dependent moments uniquely generated.

2.2.3. Combining CDR and MER: Generating Closed Form Expressions for the cn’s:

Upon substituing the MER relation into Eq.(3), the CDR projection coefficients will

take on the closed (exact) form

cn(E,−→µ ) =
−→
Λ

(n)

E · −→µ , (5)

where −→µ ≡ (µ0, . . . , µms
), the missing moment vector; and

−−→
Λ

(n)
E are known energy

dependent vectors.

Define the positive partial sums

SI(E,−→µ ) ≡
I

∑

n=0

c2n(E,−→µ ). (6)

It is straightforward to represent these partial sums as the expectation value of an energy

dependent, symmetric, positive definite matrix, PI(E) > 0, with respect to the missing

moment vector:

SI(E,−→µ ) = 〈−→µ |PI(E)|−→µ 〉. (7)
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The explicit form for these positive definite matrices are defined for each problem

considered in the following sections.

Define the smallest eigenvalue for these positive definite matrices:

λI(E) = Smallest Eigenvalue of PI(E). (8)

For one dimensional systems, all {PI(E)|I ≥ ms} will have the same dimension, 1+ms;

consequently, their smallest eigenvalues generate a positive, increasing sequence:

0 < λI(E) < λI+1(E) < . . . < λ∞(E). (9)

These relations are not generally valid for multidimensional systems because the

corresponding positive definite matrices have increasing dimension, as the number of

missing moments (i.e. the effective expansion order) is increased.

2.2.4. Constrained Quadratic Form Minimization (CQFM): The constrained quadratic

form minimization (CQFM) problem corresponds to:

LI(E) ≡ Inf−→µ {SI(E,−→µ )|C(−→µ ) = 1}. (10)

The constraint relation can be linear (to be used in the QZM case) or nonlinear. Clearly,

if C(−→µ ) ≡ |−→µ |2, we recover the eigenvalue functions. In the Appendix we show that

these expressions, so long as the constraint holds at the expansion order “I”, will also

satisfy the positive, increasing, sequence in Eq.(9):

0 < LI(E) < LI+1(E) < . . . < L∞(E). (11)

In the multidimensional case, the missing moment order ms becomes the expansion

order, I → ms. This CQFM formulation allows us to extend OPPQ-BM to the

multidimensional case, for suitable constraints, as discussed in Sec. 5 and in the

Appendix. In particular, the linear constraint equivalent to µ0 = 1, will suffice for

the QZM problem with respect to the 0+ states.

For one dimensional systems, the more natural constraint is the unit normalization

for the missing moment vector; therefore: LI(E) ≡ λI(E).

For the harmonic oscillator problem discussed in Sec. 3, ms = 0, and the PI(E)

positive definite matrix is just a number; therfore PI(E) ≡ λI(E). We use the notation

SI(E) ≡ λI(E) in this case.

For the quartic anharmonic oscillator disccused in Sec. 4, ms = 1, and the

underlying positive definite matrix is two dimensional. For this problem, we explicitly

use the λI(E) notation.

All the properties of the λI(E) functions, as presented in Sec. 3 (i.e. λI(E) ≡
SI(E)), or Sec. 4, apply in the same way to the LI(E) functions as used for

multidimensional problems. It is these properties that enable the OPPQ-BM formalism

to generate eigenenergy estimates and converging eigenenergy bounds.
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2.2.5. The OPPQ-AM and OPPQ-BM Quantization Condition: The most important

relation within OPPQ-BM is the quantization condition (assuming −→µ 6= −→
0 ):

〈Ψ| 1
R
|Ψ〉 = S∞(E,−→µ ) =







finite, ⇐⇒ E = Ephys and
−→µ = −→µ phys

∞, ⇐⇒ E 6= Ephys or
−→µ 6= −→µ phys

. (12)

This is satisfied only if the weight does not asymptotically go to zero faster than the

probability density for the physical states [16,17]; therefore the “finiteness” condition in

Eq.(12) is satisfied, for physical states. The unbounded asymptotic limit for unphysical

states then follows.

We note that the asymptotic relation in Eq.(12) is also satisfied if the asymptotic

form of the weight is that of the physical state (i.e. Lim|x|→∞
Ψ
R

= const) since the

other factor, Ψ, will exponentially decay, resulting in a finite integral. If this is the case,

then the corresponding integral for unphysical configuration space solutions will become

infinite.

The work by Handy and Vrinceanu [16,17] focuses on Eq.(12), solely for the physical

states, concluding that

Limn→∞cn(Ephys,
−→µ phys) = 0. (13)

They use this asymptotic condition, at high order, to approximate the physical energies

and missing moments. This quantization procedure defines the Orthonormal Polynomial

Projection Quantization - Approximation Method (OPPQ-AM), as designated in this

work.

The OPPQ-AM method works well as an estimation method, with faster

convergence if the weight is modeled after the asymptotic form of the physical states.

However, spurious complex energy roots, with asymptotically vanishing imaginary parts,

may contribute. An alternative quantization strategy was required in order to avoid such

spurious energies. The key to realizing an alternative quantization strategy (i.e. OPPQ-

BM) is to focus on the full extent of Eq.(12) for both physical and unphysical energy

and missing moment parameters.

This capacity of moment representations for discriminating between physical and

unphysical solutions is also an important component of EMM. In configuration space,

unphysical solutions do not have finite power moments, and therefore are “filtered”

out from the MER relation. However, within the moment representation, there

will be unphysical moment solutions that cannot correspond to any physical state

in configuration space. Their unphysical nature is conveyed through the unbounded

asymptotic limit given in Eq.(12).

2.2.6. The OPPQ-BM Ansatz: Energies and Converging Bounds The challenge was

to understand how to solve Eq.(12). We can argue that instead of dealing with Eq.(12),

we can focus on the simpler problem devoid of any missing moment vectors:

LimI→∞LI(E) =







finite, ⇐⇒ E = Ephys

∞, ⇐⇒ E 6= Ephys

. (14)
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We prove this relation, for the case LI(E) ≡ λI(E), within the discussion on the

quartic-anharmonic oscillator, which corresponds to an ms = 1 system. The more

general case (i.e. LI(E) 6= λI(E), due to other types of constraints, as indicated in

Eq.(10)) is presented in the Appendix. The relation in Eq. (14), combined with Eq.(11),

are the key to the generation of converging eigenenergy bounds within the OPPQ-BM

formalism. Everything presented below follows from these two relations.

We repeat the previous point because it is the essence of OPPQ-BM for any

system in any dimension. Given Eq.(14), and Eq.(11), in that order, one can generate

eigenenergy bounds through OPPQ-BM, for any one dimensional, or multidimensional,

problem admitting a MER representation. In Sec. 4, for the quartic anharmonic

oscillator, we prove it in the context of setting LI(E) ≡ λI(E). In the Appendix,

we prove it for the general case, although we apply it to the QZM problem in Sec. 5.

The proofs are straightforward.

Clearly, Eq.(14) is telling us that the physical solutions are the local minima of

L∞(E):

∂EL∞(Ephys) = 0; (15)

therefore, one should focus on the local minima of the I-th order function, since these

should approximate the physical energies to I-th order:

∂ELI(E
(min)
I ) = 0. (16)

From Eq.(11), these local minima will in turn generate another positive, increasing,

bounded from above sequence:

0 < LI(E
(min)
I ) < LI+1(E

(min)
I+1 ) < . . . < L∞(Ephys) = finite. (17)

That is, the sequence of local extrema do indeed converge to the physical energies:

LimI→∞E
(min)
I = Ephys. (18)

Let BU be any coarse upper bound to the limiting form of the bounded sequence in

Eq.(17). If this sequences converges sufficiently fast, one can determine BU . Accordingly,

assume that this coarse upper bound has been determined:

BU > L∞(Ephys) = finite, from Eq.(17). (19)

Solve for the roots:

LI(E
(L)
I ) = LI(E

(U)
I ) = BU , (20)

which will always have a solution, due to Eq.(14). These roots will then define lower

and upper bounds to the physical energies:

E
(L)
I < Ephys < E

(U)
I , (21)

with

LimI→∞
(

E
(U)
I − E

(L)
I

)

= 0+. (22)

In the sections that follow, we implement the above on the quantum harmonic

oscillator problem, the quartic anharmonic oscillator, and QZM. Within their
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presentations, we will offer proofs, or rationales, as needed. In the Appendix we provide

a proof for the general relation in Eq.(14), although it will be similar to that in Sec. 4,

for the case LI(E) = λI(E). We also provide a proof for the general form of Eq.(11).
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3. The Quantum Harmonic Oscillator

The quantum harmonic oscillator is an ms = 0 problem, when restricted to each

symmetry class. We can then set the zeroth order moment to unity, u0 = 1,

making the SI(E) functions in Eq.(6) independent of any missing moments. Thus,

effectively, λI(E) = SI(E); however, for the harmonic oscillator problem we do not,

explicitly, use the λI(E) notation. The OPPQ-BM bounding structure will develop in

a straightforward manner. All the properties exhibited by the SI(E) functions for the

harmonic oscillator problem presented here, will apply to the general ms 6= 0 case, but

for their corresponding, purely energy dependent, functions (i.e. λI(E) and LI(E) as

introduced in Sec. 1).

3.1. The Moment Equation Representation (MER)

Consider the harmonic oscillator,

−∂2
xΨ(x) + x2Ψ(x) = EΨ(x). (23)

To transform it into MER form multiply both sides by xp, and integrate by parts,

assuming that Ψ is a discrete state configuration. We obtain the Hamburger moment

equation representation:

µ(p+ 2) = Eµ(p) + p(p− 1)µ(p− 2), (24)

for p ≥ 0. This is, effectively, a finite difference equation of order 2, in which the

initialization moments {µ(0), µ(1)} must be specified before all the other moments

can be generated, for any energy parameter value, E. We refer to these initialization

moments as the missing moments. For the full harmonic oscillator (working with the

even and odd states simultaneously), the missing moment order is ms = 1. We also

note that the order of the finite difference equation does not change if the kinetic

energy term (i.e. p(p − 1)µ(p − 2)) is removed. This suggests that within a moments

representation, or equivalently, a Fourier space representation, singular-perturbation

expansions in configuration space become (more) regular perturbation expansions.

The MER relation can be rewritten as

µ(p) =
ms=1
∑

ℓ=0

M̃E(p, ℓ)µℓ, (25)

for p ≥ 0, µℓ ≡ µ(ℓ), and M̃E(ℓ1, ℓ2) = δℓ1,ℓ2. The energy dependent coefficients M̃E(p, ℓ)

(polynomials in E) also satisfy the same MER relation in Eq.(24) with respect to the

p-index, subject to the indicated initialization conditions.

Restricting our analysis to the symmetric states, for simplicity, the odd order

Hamburger moments become zero, µ(odd) = 0. The even order Hamburger moments

become Stieltjes moments of a configuration restricted to the nonnegative real axis.

Thus, let u(p) ≡ µ(2p) =
∫∞
0 dξ ξpΦ(ξ) where Φ(ξ) ≡ Ψ(

√
ξ)√
ξ
. The new MER relation is

u(p+ 1) = E u(p) + 2p(2p− 1) u(p− 1), (26)
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p ≥ 0. This is anms = 0 problem since only one missing moment is required, u(0) ≡ u0.

We then have the relation (expressed in the standard form)

u(p) =
ms=0
∑

ℓ=0

ME(p, ℓ)uℓ, (27)

for p ≥ 0, and ME(0, 0) = 1. The ME(p, ℓ) energy dependent coefficients satisfy Eq.(26)

with respect to the p-index.

3.2. The Christoffel-Darboux Representation

Since the Stieltjes moments, u(p), are the power moments of a function on the

nonnegative real axis, Φ(ξ), ξ ≥ 0, we can expand the physical solutions in terms of the

orthonormal polynomials of an appropriate weight, R(ξ). Given that the asymptotic

form for Ψ(x) is governed by R(x) = exp(−x2

2
), whose orthogonal polynomials are the

Hermite polynomials Hen(x) satisfying 〈Hem|R(x)|Hen〉 = Nnδm,n, the transformation

x → ξ = x2 will involve the weight R(ξ) ≡ exp(−ξ/2)√
ξ

. The corresponding orthogonal

polynomials would be He2η(ξ
1

2 ) which become polynomials of degree η in the ξ variable.

Let us represent their orthonormal counterparts by

Pη(ξ) =
η
∑

j=0

Ξ
(η)
j ξj, (28)

where

〈Pη1 |R|Pη2〉 = δη1,η2. (29)

The Christoffel-Darboux representation (CDR) expands the physical configuration

in terms of the basis {Pη(ξ)R(ξ)|η ≥ 0}:

Φ(ξ) =
∞
∑

η=0

cηPη(ξ)R(ξ). (30)

We emphasize that although the polynomials are orthonormal relative to the chosen

weight, the basis functions Pη(ξ)R(ξ) are non-orthogonal relative to each other.

The projection coefficients are generated in closed form from the associated MER

relation:

cη(E) = 〈Pη|Φ〉,
=

η
∑

j=0

Ξ
(η)
j u(j),

=
η
∑

j=0

Ξ
(η)
j

(

ms
∑

ℓ=0

ME(j, ℓ) uℓ

)

,

=
ms=0
∑

ℓ=0

Λ
(η)
E,ℓ uℓ,

= Λ
(η)
E,0, (31)
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where we have exaggerated the notation in anticipation of the more general case, and

taken u0 ≡ 1. The Λ-coefficients are given by

Λ
(η)
E,ℓ =

η
∑

j=0

Ξ
(η)
j ME(j, ℓ). (32)

For the chosen weight, the orthonormal polynomials are given through closed form

expressions:

Pη(ξ) = (−1

2
)η
((2η)!)

1

2

(2π)
1

4

η
∑

j=0

(−2)j

(η − j)!(2j)!
ξj. (33)

3.3. Orthogonal Polynomial Projection Quantization - Approximation Method

(OPPQ-AM)

In their combined CDR-MER/OPPQ-AM eigenenergy estimation formalism, Handy and

Vrinceanu [16,17] argued that for the physical solutions, if the chosen weight satisfies the

condition that the ratio Limξ→∞
Φ2

phys
(ξ)

R(ξ)
→ 0 (i.e. asymptotically vanishes fast enough

so that its integral is finite), then the finiteness of the ensuing positive series

〈Φphys|
1

R|Φphys〉 =
∞
∑

η=0

c2η(Ephys) < ∞, (34)

leads to the quantization condition:

Limη→∞cη(Ephys) = 0. (35)

Thus, depending on the missing moment order, ms, for a given expansion order, N , one

sets to zero the cηℓ coefficients for ηℓ = N − ℓ, and 0 ≤ ℓ ≤ ms. Since the harmonic

oscillator has ms = 0, then all that is required is to examine the roots of cN(E) = 0, for

increasing expansion order, N .

Indeed, for the harmonic oscillator problem, the OPPQ-AM ansatz is exact, since

one can show that the CDR coefficients assume the form

cη(E) =















1

(2π)
1

4

, for η = 0,

NηΠ
η
j=1(E − (1 + 4(j − 1))), for η ≥ 1.

(36)

the roots being the exact even parity state energy values, E2N = 1+4N , forN = 0, 1, . . ..

3.4. The Quantization Condition for OPPQ-BM

From Eq.(34), we are motivated to consider the partial sums:

SI(E) ≡
I

∑

η=0

c2η(E), (37)

which define a positive, increasing, sequence

0 < SI(E) < SI+1(E) < . . . < S∞(E), (38)

12
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Figure 1. Log10(SI(E)) for symmetric states of the harmonic oscillator; I =

5, 8, 11, . . . , 32.

and according to Eq. (34) satisfy the OPPQ-BM quantization condition:

LimI→∞SI(E) =







finite, ⇐⇒ E = Ephys;

∞, ⇐⇒ E 6= Ephys

. (39)

Indeed, Eq.(39) holds for all one dimensional and multidimensional problems,

provided the proper energy functions are used to define SI(E) (i.e. LI(E) from Eq.(10)).

In Figs. 1-3 we illustrate the validity of Eq.(39) over different energy intervals.

From Eq.(39) an eigenenergy bounding ansatz emerges. Clearly, the essence of

Eq.(39) is that the local minima of S∞(E), correspond to the physical energies;

∂E
(

S∞(Ephys)
)

= 0. (40)

This suggest that to finite order, the corresponding local minima approximate the

physical energies.

Define

∂E
(

SI(E
(min)
I )

)

= 0. (41)

Then from Eq.(38) it follows that these local minima satisfy

SI(E
(min)
I ) < SI(E

(min)
I+1 ) < SI+1(E

(min)
I+1 ), (42)

assuming that E
(min)
I+1 lies within the minima extremal neighborhood of E

(min)
I , which

it will. This means that the local minima define another positive, increasing, bounded

from above, sequence:

0 < SI(E
(min)
I ) < SI+1(E

(min)
I+1 ) < . . . < S∞(Ephys) < ∞. (43)

13



3.5. OPPQ-BM: A High Accuracy Energy Estimation Method

As previoulsy noted, one of the problems of the OPPQ-AM approach is that spurious

complex energies may appear; although the imaginary parts generally vanish in the

infinite order expansion limit. Within OPPQ-BM, the energy approximants (i.e. the

local minima) are always real. Furthermore, from Eq.(43), the limit of the local minima

is the physical energy:

LimI→∞E
(min)
I = Ephys. (44)

3.6. OPPQ-BM: The Eigenenergy Bounding Process

Let BU be any coarse upper bound to the local minima sequence:

BU > {SI(E
(min)
I )|I ≥ 0}. (45)

It is implicitly assumed that the sequence elements all correspond to a particular physical

energy. Usually, the increasing positive sequence, SI(E
(min)
I ), converges fast enough,

allowing for a quick estimate of the coarse upper bound, BU .

From Eq.(39) it follows that at expansion order I, there will be roots to the

equations

SI(E
(L)
I ) = S(E(U)

I ) = BU . (46)

The interval [E
(L)
I , E

(U)
I ] must contain the physical energy; thereby generating bounds:

E
(L)
I < Ephys < E

(U)
I . (47)

Furthermore, in the infinite expansion limit, these lower and upper bounds must

converge to each other:

LimI→∞
(

E
(U)
I − E

(L)
I

)

= 0. (48)

3.7. OPPQ-BM Numerical Results for the Harmonic Oscillator

In Fig. 1, we plot Log10
(

SI(E)
)

over the interval 0 ≤ E ≤ 20. The nesting of the

SI(E) curves is readily apparent, consistent with Eq.(38) and Eq.(39). Although these

functions are nested within each other, their local minima do not necessarily coincide

(i.e. as clearly shown in Fig.3 for the second excited state).

In Fig. 2 we show the progression of localized concavity around the ground state

energy (Egr = 1) for the lower order partial sums, {SI(E)|3 ≤ I ≤ 12}. Indeed, the

SI(1) sequence is S0(1) = S1(1) = . . . = 1√
2π

= .398942; thereby concluding, within our

OPPQ-BM formulation, that the ground state energy is precisely 1.

Things are more interesting for the second excited state, as given in Fig. 3

and Table I . We determine the local minima ∂ESI(E
(min)
I ) = 0, and generate the

sequence {SI(E
(min)
I )} whose convergence defines S∞(E2) = 3.5904805. Inspection of

14
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Figure 2. Nesting of the partial sums Log10(SI(E)) centered around the ground state

(i.e. Egr = 1) for the harmonic oscillator, where I = 3, 4, 5, . . . , 12. Note that all

curves share the same, fixed, minimum.
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Figure 3. Nesting of the partial sums Log10(SI(E)) centered around the 2nd excited

state, E2 = 5, for the harmonic oscillator, where I = 3, 4, 5, . . . , 12. Note that their

respective minima, in the energy variable, monotonically increase to E = 5; and they

all have the same derivative at that point.

the sequence in the third column leads us to conclude that convergence is already setting

in at the fourth decimal place. A coarse upper bound BU = 3.6 > S∞(E2) then allows us

to generate converging bounds to the excited state by taking SI(E
(L)
I ) = SI(E

(U)
I ) = BU ,

for I → ∞. Note that the coarseness of the upper bound estimate for BU does not

determine the tightness of the eigenenergy bounds (which depend only on the expansion

order I).
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Table 1. OPPQ-BM for E2: V (x) = x2, R = e−
x
2

2

I ∂ESI(E
(min)
I ) = 0 SI(E

(min)
I ) E

(L)
I E

(U)
I

6 4.53222 3.20587 4.07088 5.00593

7 4.73661 3.37132 4.48590 5.00591

8 4.86462 3.47875 4.73214 5.00585

9 4.93802 3.54002 4.87312 5.00572

10 4.97454 3.56996 4.94437 5.00541

11 4.99037 3.58276 4.97612 5.00479

12 4.99656 3.58773 4.98933 5.00384

13 4.99882 3.58954 4.99489 5.00276

14 4.99961 3.59017 4.99741 5.00181

20 4.9999996 3.5904802 4.99993 5.00007

∞ 5 3.5904805 < BU = 3.6 5 5

4. The Double Well, Quartic, Anharmonic, Oscillator

The quartic anharmonic potential corresponds to anms = 1 problem, within each parity

symmetry class; and is representative of the most general type of problem amenable to

OPPQ-BM analysis.

For the quartic anharmonic oscillator, the SI(E,−→u ) functions in Eq.(6) retain their

missing moment dependence. We then introduce the purely energy dependent eigenvalue

functions, λI(E), as discussed in Sec. 2. These will allow us to implement the OPPQ-

BM eigenenergy bounding formalism.

We do not have to work with these, λI(E), functions which correspond to the

C(−→u ) = u2
0 + u2

1 = 1 constraint within the CQFM formulation in Eq.(10). We can

implement OPPQ-BM relative to another linear or nonlinear constraint on the missing

moments; however, this is not investigated here. This flexibility is the process by which

we can extend OPPQ-BM to multidimensional systems, as done in Sec. 5 for the QZM

problem.

All the necessary proofs of OPPQ-BM, for one dimensional formulations using

LI(E) ≡ λI(E) are given here, in the context of the quartic anharmonic oscillator

problem.

4.1. OPPQ-BM: MER and CDR Preliminaries

For simplicity, we solely focus on the symmetric states of the quartic anharmonic

potential, V (x) = x4 − 5x2. We implement the same analysis as that of the harmonic

oscillator. The (Stieltjes) moments satisfy the MER representation:

u(p+ 2) = 5u(p+ 1) + Eu(p) + 2p(2p− 1)u(p− 1), p ≥ 0. (49)

We note that {u(0) ≡ u0, u(1) ≡ u1} are the two independent initialization, or missing,

moments.
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The moment equation can be expressed as

u(p) =
ms=1
∑

ℓ=0

ME(p, ℓ)uℓ, (50)

where

ME(p+ 2, ℓ) = 5ME(p+ 1, ℓ) + EME(p, ℓ) + 2p(2p− 1)ME(p− 1, ℓ),

(51)

p ≥ 0, and

ME(ℓ1, ℓ2) = δℓ1,ℓ2, 0 ≤ ℓ1,2 ≤ ms = 1. (52)

Using the same CDR representation (and weight) as in the harmonic oscillator

case we have (i.e. the Stieltjes representation, for the symmetric states, involves the

configuration Φ)

cη(E, u0, u1) = 〈Pη|Φ〉,
cη(E, u0, u1) =

η
∑

j=0

Ξ
(η)
j u(j),

cη(E, u0, u1) =
1

∑

ℓ=0

Λ
(η)
E,ℓ uℓ =

−−→
Λ

(η)
E · −→u , (53)

where −→u ≡ (u0, u1), and

Λ
(η)
E,ℓ =

η
∑

j=0

Ξ
(η)
j ME(j, ℓ). (54)

4.2. The General Form for the OPPQ-BM Quantization Condition

The partial sums correspond to

SI(E,−→u ) =
I

∑

η=0

c2η(E,−→u ), (55)

or

SI(E,−→u ) =
I

∑

η=0

(
−→
Λ

(η)

E · −→u )2,

= 〈−→u |
I

∑

η=0

−−→
Λ

(η)
E

−−→
Λ

(η)
E |−→u 〉,

≡ 〈−→u |PI(E)|−→u 〉. (56)

We explicitly identify the indicated matrix in Eq.(56) because it will play an important

role in the OPPQ-BM formalism:

PI(E) ≡
I

∑

η=0

−−→
Λ

(η)
E

−−→
Λ

(η)
E > 0. (57)

This symmetric matrix is of dimension 1 + ms = 2. It is positive definite if I ≥ 1,

since it should involve two linearly independent
−→
Λ vectors. An additional, extremely

important property follows from its definition:
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PI+1(E) = PI(E) +
−−−→
Λ

(I+1)
E

−−−→
Λ

(I+1)
E . (58)

Thus, if I ≥ 1, the PI(E) matrices are positive definite, whereas the dyad matrix is

semidefinite. More importantly, all the matrices have the same dimension 1 +ms = 2.

Define the smallest eigenvalue for the PI(E) matrix:

λI(E) ≡ Smallest Eigenvalue of PI(E). (59)

Since the dimension of the matrices in Eq.(58) are all the same, it follows that

0 < λI(E) < λI+1(E) < . . . < λ∞(E). (60)

This relation does not hold in the multidimensional case, for the corresponding positive

definite matrices, since their dimension changes with the order (i.e. ms) of the expansion.

The energy and missing moment partial sums define a positive, increasing sequence:

0 < SI(E,−→u ) < SI+1(E,−→u ) < . . . < S∞(E,−→u ). (61)

The asymptotic limit, S∞(E,−→u ), corresponds to the expression 〈Φ| 1R |Φ〉 which, from

Eq.(12), must be finite for physical states, and infinite, for unphysical values for the

energy and/or missing moments. This becomes the OPPQ-BM quantization condition:

LimI→∞SI(E,−→u ) =







finite, ⇐⇒ E = Ephys and −→u = −→u phys,

∞, ⇐⇒ E 6= Ephys or
−→u 6= −→u phys.

(62)

This is the general type of expression for both one dimensional and multidimensional

problems.

4.3. Solving the OPPQ-BM Quantization Conditions, Eq.(62)

The challenge is to develop a procedure for solving Eq.(62). As will become clear here

and in the next section, for any one dimension, or multidimensional, space problem, the

missing moments do not directly contribute towards the quantization process. We can

identify purely energy dependent functions whose asymptotic properties mimic those

of the SI(E) functions for the harmonic oscillator case (i.e. Eq.(39)); and which will

have all the other properties exhibited by these functions, leading to the generation of

converging eigenenergy bounds.

Given the strictly increasing nature of the smallest eigenvalue sequence in Eq.(60),

one may suspect that these expressions will define the desired SI(E) functions. This

will be the case. We first prove certain additional properties of the above eigenvalue

sequence. We note that for the one dimensional case, if the focus is on the λI(E)

expressions, since all the missing moment vectors in Eq.(61) are of the same dimension,

nothing is lost by using unit missing moment vectors: −→u → û.
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Adapting Eq.(61) to the one dimensional case, involving unit missing moment

vectors, we have:

LimI→∞SI(E, û) =







finite, ⇐⇒ E = Ephys and û = ûphys,

∞, ⇐⇒ E 6= Ephys or û 6= ûphys.
(63)

The question is: what must be the physical missing moment unit vector, at infinite

order, satisfying Eq.(63), or:

S∞(Ephys, ûphys) = finite. (64)

The answer is, it must correspond to the eigenvector with smallest eigenvalue for the

P∞(Ephys) positive definite matrix defining S∞(E, û) = 〈û|P∞(E)|û〉.
The proof of this important result is by reductio ad absurdum. Denote by ûσ the

missing moment eigenvector with the smallest eigenvalue, for the P∞(Ephys) matrix:

S∞(Ephys, ûσ) ≡ λ∞(Ephys) ≡ Inf−→u {S∞(Ephys,−→u )| where |−→u |2 = 1}. (65)

Then if we assume that both unit vectors (i.e. ûphys and ûσ) are different, we obtain a

contradiction:

ûphys 6= ûσ ⇐⇒ Contradiction. (66)

The simple reason is that the smallest eigenvalue is smaller than the expectation value

with respect to any other unit vector. However, since the smallest eigenvalue corresponds

to an unphysical (by assumption) missing moment unit vector, it must be infinite, based

on the OPPQ-BM quantization condition:

∞ = S∞(Ephys, ûσ) < S∞(Ephys, ûphys) = finite. (67)

This is the contradiction that validates:

λ∞(Ephys) = finite, (68)

or ûphys = ûσ.

The previous result strongly suggests that we can replace Eq.(63) with a similar

result solely involving the eigenvalue functions:

LimI→∞λI(E) =







finite, ⇐⇒ E = Ephys,

∞, ⇐⇒ E 6= Ephys.
(69)

Given Eq.(69), combined with Eq.(60), it is now clear that for one dimensional

systems the smallest eigenvalue functions, λI(E), will have exactly the same properties

as the SI(E) functions for the harmonic oscillator. All the properties identified for the

harmonic oscillator problem repeat themselves. The most important are given below.

Define the local minima of λI(E) by λI(E
(min)
I ), where

∂EλI(E
(min)
I ) = 0. (70)

We then have from Eq. (60):

0 < λI(E
(min)
I ) < λI(E

(min)
I+1 ) < λI+1(E

(min)
I+1 ), (71)
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as was the case for SI(E) in Eq. (42). This then generates the positive, increasing,

bounded sequence :

0 < λI(E
(min)
I ) < λI+1(E

(min)
I+1 ) < . . . < λ∞(Ephys) < ∞ ; (72)

which in turn yield high accuracy estimates for the eigenenergies:

LimI→∞EI
(min) = Ephys. (73)

Any coarse upper bound BU to the sequence in Eq.(72), will generate converging

bounds to the physical energies. In particular, the roots of λI(E
(L)
I ) = λI(E

(U)
I ) = BU

define converging lower and uper bounds to the physical energy,

E
(L)
I < Ephys < E

(U)
I , (74)

and

LimI→∞
(

E
(U)
I − E

(L)
I

)

= 0+. (75)

4.4. Numerical Results

In Tables 2 and 3 we give the OPPQ-BM energy estimates for our problem, and bounds

for the fifth even parity state, E8. In Table 3, already at I = 100 we are confident of

a coarse upper bound (i.e. .7) to the SI(EI) limit of approximately .64. Despite a 9%

coarseness in the BU estimate (i.e. .7−.64
.64

= 9%), we can continue to bound the energy

up to I = 250, achieving a bounding accuracy of 10−15.

4.5. Closed form expression for ∂EλI(E)

In determining the roots of ∂EλI(E) = 0, we can exploit the fact that these expressions

can be generated in closed form, if the smallest (missing moment) unit eigenvector is

generated.

In terms of its eigenvector, λI(EI) = 〈ûI(EI)|PI(EI)|ûI(EI)〉, we have:

∂EλI(EI) = 〈ûI(EI)|
∂

∂E
PI(EI)|ûI(EI)〉 = 0. (76)

The expression ∂
∂E

PI(EI) can be calculated as follows:

∂EPI(E) = ∂E
(

I
∑

η=0

−−→
Λ

(η)
E

−−→
Λ

(η)
E

)

,

=
I

∑

η=0

−−−−→
∂EΛ

(η)
E

−−→
Λ

(η)
E +

I
∑

η=0

−−→
Λ

(η)
E

−−−−→
∂EΛ

(η)
E ;

(77)

and
−−−−→
∂EΛ

(η)
E = ∂E(Λ

(η)
E,0,Λ

(η)
E,1, . . . ,Λ

(η)
E,ms

), (78)

∂EΛ
(η)
E,ℓ =

η
∑

j=0

Ξ
(η)
j ∂EME(j, ℓ), (79)
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assuming the orthonormal polynomial coefficients are independent of the energy

parameter, E. Exceptions to this can arise. The expression ∂EME(j, ℓ) can be obtained

from the moment equation directly, as follows.
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Table 2. OPPQ-BM Energies, ∂EλI(EI) = 0, V (x) = x4 − 5x2, ms = 1, R = e−
x
2

2 .

I E0 E2 E4 E6 E8

10 -3.28719572670 1.19986317656 9.03942279437

20 -3.40545008630 .66975276413 6.12438920846 13.8508828043

30 -3.41010592876 .63936791163 5.89206898015 13.5675998541 22.6774222840

40 -3.41014379159 .63892839165 5.88534289705 13.5483205270 22.6347607487

50 -3.41014273834 .63892037926 5.88529619878 13.5475790455 22.6359743625

60 -3.41014275904 .63891958477 5.88529405095 13.5475707843 22.6363247631

70 -3.41014276124 .63891956388 5.88529385955 13.5475708449 22.6363360218

80 -3.41014276124 .63891956381 5.88529385889 13.5475708482 22.6363363374

90 -3.41014276124 .63891956378 5.88529385879 13.5475708486 22.6363363803

100 -3.41014276124 .63891956378 5.88529385878 13.5475708486 22.6363363809

From Eq.(51) it follows that

∂EME(p+ 2, ℓ) = 5∂EME(p+ 1, ℓ) + E∂EME(p, ℓ) +ME(p, ℓ)

+ 2p(2p− 1)∂EME(p− 1, ℓ), p ≥ 0, (80)

where

∂EME(ℓ1, ℓ2) = 0, 0 ≤ ℓ1,2 ≤ ms . (81)

Thus, assuming the ME(p, ℓ) have been generated then the partial derivative with re-

spects to the energy can be also generated.
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Table 3. OPPQ-BM Bounds for E8: V (x) = x4 − 5x2, R = e−
x
2

2

I ∂Eλ(E
(min)
I ) = 0 λI(EI) E

(L)
I E

(U)
I

30 22.6774222840 .64106446 21.4017 23.8979

40 22.6347607487 .64116603 22.3932 22.9076

50 22.6359743625 .64117354 22.5408 22.7332

60 22.6363247631 .64117452 22.6215 22.6512

70 22.6363360218 .64117456 22.6339 22.6387

80 22.6363363374 .64117456 22.6355 22.6372

90 22.6363363803 .64117456 22.636248 22.636435

100 22.6363363809 .64117456 22.636304 22.636368

110 22.6363308 22.6363418

120 22.6363352 22.6363375

130 22.6363360 22.6363367

140 22.63633633 22.63633643

150 22.6363363640 22.6363363970

160 22.6363363789 22.6363363828

170 22.6363363800 22.6363363818

180 22.63633638079 22.63633638099

190 22.63633638084 22.63633638094

200 22.636336380885 22.636336380898

210 22.6363363808889 22.6363363808954

220 22.6363363808908 22.6363363808928

230 22.6363363808916 22.6363363808920

240 22.636336380891744 22.636336380891824

250 22.636336380891776 22.636336380891798

.64117456 < BU = .7

5. The Quadratic Zeeman Problem

In this problem we show the inadequacy of using the λI(E) functions for implementing

OPPQ-BM in multidimensions. Instead, by using different missing moment constraint

relations within an LI(E) formulation (i.e. Eq. (10)), we can implement OPPQ-BM and

generate tight bounds, over a broad range of magnetic fields. The necessary proofs that

these new energy dependent functions satisfy the basic OPPQ-BM structure is found in

the Appendix.

5.1. The MER Representation

For simplicity, we examine the even parity, zero azimuthal angular momentum states,

for the quadratic Zeeman (QZM) problem corresponding to:

(

− 1

2
∆ +

B2

8
(x2 + y2)− 1

r
−E

)

Ψ = 0. (82)
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We adopt the parabolic coordinate representation formalism used by Handy et al

[3,4], transforming the three dimensional QZM problem (atomic units adopted), into

a parabolic coordinate representation defined by ξ = r − z ≥ 0, η = r + z ≥ 0.

Additionally, from EMM we know that a more efficient missing moment structure (i.e.

a reduction in the order of the finite difference equation) is obtained if we transform the

wavefunction according to

Φ(ξ, η) ≡ Ψ(ξ, η)exp(−Bξη/4). (83)

The transformed parabolic partial differential equation becomes

∂ξ(ξ∂ξΦ) + ∂η(η∂ηΦ) +
1

2
Bξη(∂ξΦ + ∂ηΦ) +

[1

2
(E +

1

2
B)(ξ + η) + 1

]

Φ = 0. (84)

The asymptotic form of the transformed configuration is given by R(ρ, z) = exp(−B
2
ρ2)×

exp(−
√

ǫ
2
|z|), where ρ2 = x2 + y2, or :

Φ(ξ, η) → exp
[

− 1

2
Bξη − (

ǫ

2
)
1

2 |η − ξ|
]

, (85)

where the binding energy is given by ǫ = B/2− E.

The two dimensional Stieltjes moments for Φ are defined by

u(m,n) =
∫ ∞

0
dξ

∫ ∞

0
dη ξmηnΦ(ξ, η), (86)

with moment equation

m2u(m− 1, n) + n2u(m,n− 1)

−1

2
[Bm+ ǫ]u(m,n+ 1)− 1

2
[Bn + ǫ]u(m+ 1, n) + u(m,n) = 0, (87)

with even parity invariance (z ↔ −z or ξ ↔ η) reflected in the moment reflection

symmetry u(m,n) = u(n,m).

The moment equation defines a “nearest neighbor” pattern in which the u(m,n)

moment is linked to the {u(m + 1, n), u(m− 1, n), u(m,n + 1), u(m,n− 1)} moments,

so long as the reflection symmetry is exploited, and the moment indices limited to the

nonnegative integers m,n ≥ 0. The missing moments correspond to {u(ℓ, ℓ)|ℓ ≥ 0}.
For 0 ≤ ℓ ≤ ms, the 1 + ms missing moments, u(ℓ, ℓ) ≡ uℓ, generate all the moments

defined through their antidiagonal index: {u(m,n)|m+ n ≤ 2ms + 1}. In this manner

we generate the moment - missing moment relation:

u(m,n) =
ms
∑

ℓ=0

Mǫ(m,n, ℓ)uℓ, where 0 ≤ m+ n ≤ 2ms + 1, (88)

uℓ ≡ u(ℓ, ℓ) and Mǫ(ℓ1, ℓ1, ℓ2) = δℓ1,ℓ2.

Given the first 1 + ms missing moments, {uℓ|0 ≤ ℓ ≤ ms}, a finite number of

moments are generated, defining the Ums
subspace. These subspaces form a nested

hierarchy, Ums
⊂ Ums+1 ⊂ . . . ⊂ U∞. The MER relation is an exact projection of the

Schrodinger equation into each of these subspaces.

The binding energy matrix coefficients, Mǫ(m,n, ℓ), satisfy the moment equation

with respect to the (m,n) indices and the given initialization conditions:
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m2Mǫ(m− 1, n, ℓ) + n2Mǫ(m,n− 1, ℓ)− 1

2
[Bm+ ǫ]Mǫ(m,n+ 1, ℓ)

−1

2
[Bn + ǫ]Mǫ(m+ 1, n, ℓ) +Mǫ(m,n, ℓ) = 0, (89)

where Mǫ(ℓ1, ℓ1, ℓ2) = δℓ1,ℓ2.

5.2. Generating the Orthonormal Polynomials

The preferred reference function - weight is any expression which takes on the asymptotic

form of the physical solutions. Instead of using the expression in Eq.(85), an easier

expression to use (with respect to generating the required power moments of the

weight, and in turn the coefficients of the orthonormal polynomials) is RQZM(ρ, r) =

exp(−B
2
ρ2)× exp(−

√

ǫ
2
r):

RQZM(ξ, η) = exp
(

− 1

2
Bξη − (

ǫ

2
)
1

2 (ξ + η)
)

, (90)

with power moments

wQZM(m,n) =
∫ ∞

0
dξ

∫ ∞

0
dη ξmηnexp

(

− βξη − α(ξ + η)
)

, (91)

≡ n!

αm+n+2
Ω(m,n+ 1, g) (92)

where α = ( ǫ
2
)
1

2 , β = 1
2
B, and g = β

α2 = B
ǫ
. The Ω functions are recursively generated

as follows. First, Ω(0, 1, g) < 1 is numerically determined to high accuracy. This then

allows us to generate

Ω(0, n+ 1, g) =
n
∑

j=1

(−1)j+1

gj
(n− j)!

n!
+

(−1)n

gnn!
Ω(0, 1, g), (93)

for n ≤ N . For each such ‘n’, we can generate

Ω(m+ 1, n+ 1, g) =
1

g
δm,0 +

m

g
Ω(m− 1, n+ 1, g) + [m− n− g−1]Ω(m,n + 1, g), (94)

for 0 ≤ m ≤ M .

One can allow the reference function to incorporate the binding energy parameter,

as given above. This makes the generation of the orthonormal polynomials more time

consuming. We do this to low order to obtain an estimate of the physical binding energy

(i.e. ǫ0 ≈ ǫphys). Once this is determined, we then keep ǫ0 fixed within RQZM , and keep ǫ

as a variable within the moment equation. So long as ǫ > ǫ0, we preserve the asymptotic

requirements of the OPPQ formalism. Implementing the above process for ǫ0, we find

that it corresponds to the first significant figure for the (eventual) physical energy. The

data in Tables 4 are generated on this basis.

The orthonormal polynomials will take on the form

PI(ξ, η) ≡
I

∑

j=0

Ξ
(I)
j ξmjηnj , (95)
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for some appropriate coordinate pair sequence ordering, {(mj , nj)|j = 0, 1, 2, . . .}. This
sequence ordering must map into the set of nonnegative coordinate integer pairs in a

one-to-one and onto manner. Given that the missing moments generate the previously

identified moment subspaces, Ums
, the most efficient sequence ordering must emulate

this as well. The most natural choice is in a progression based on their antidiagonal

sum: (0, 0)0, (1, 0)1, (0, 1)2, (2, 0)3, (1, 1)4, (0, 2)5, . . ..

The orthonormal polynomials must satisfy the orthonormal relations relative to

the chosen weight, 〈−→Ξ (I)|W|−→Ξ (J)〉 = δI,J , where the positive Hankel moment matrix is

given by Wi,j ≡ wQZM(mi +mj , ni + nj). The coefficients are then obtained through

the Cholesky decomposition W = CC†, resulting in
−→
Ξ

(I)
=

(

C†
)−1

êI , where êI is the

unit coordinate vector in the I-th direction.

5.3. The CDR-MER/OPPQ Representation

Assembling all the OPPQ-BM components we have the following. The CDR-

MER/OPPQ expansion takes on the form

Φ(ξ, η) =
∞
∑

I=0

cI PI(ξ, η) RQZM(ξ, η), (96)

and the projection coefficients become (i.e. cI = 〈PI |Φ〉)

cI =
I

∑

j=0

Ξ
(I)
j u(mj, nj), (97)

or

cI(ǫ,
−→u ) =

ms(I)
∑

ℓ=0

Λ
(I)
ǫ,ℓ uℓ, (98)

where ms(I) is the missing moment order required to generate cI , and

Λ
(I)
ǫ,ℓ =

I
∑

j=0

Ξ
(I)
j Mǫ(mj, nj , ℓ). (99)

An alternative way to use the above relations is to say that the first 1 + ms

missing moments, {uℓ|0 ≤ ℓ ≤ ms}, can be used to generate all the moments

{u(m,n)|0 ≤ m+ n ≤ 2ms + 1}, through the moment-missing moment relation in Eq.

(87). However, these are the moments required in order to generate all the sequentially

ordered cI coefficients satisfying {cI |0 ≤ I ≤ Ims
≡ (ms + 1)(2ms + 3) − 1} in Eq.

(98). These cI coefficients depend on the coefficients of the orthonormal polynomials

for the same range of I-index values. However, these coefficients require a Cholesky

analysis relative to the RQZM -moment matrix Wi,j = wQZM(mi + mj , ni + nj) where

mi +mj + ni + nj ≤ 2(2ms + 1), and 0 ≤ I ≤ Ims
. That is, the generation of the Ω’s

requires M +N ≤ 2(2ms + 1), as defined through Eqs.(93,94).

The corresponding partial sums, SI , become :

SI(ǫ,−→u ) =
I

∑

i=0

(

ci(ǫ,−→u )
)2
,
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=
ms(I)
∑

ℓ1=0

ms(I)
∑

ℓ2=0

uℓ1PI;ℓ1,ℓ2(ǫ)uℓ2,

PI;ℓ1,ℓ2(ǫ) ≡
I

∑

i=0

Λ
(i)
ǫ,ℓ1

Λ
(i)
ǫ,ℓ2

,

PI(ǫ) =
I

∑

i=0

−→
Λ(i)

ǫ

−→
Λ(i)

ǫ , (100)

involving a symmetric positive definite matrix, PI(ǫ), made up of indiviual semidefinite

dyadic matrices. This matrix, PI(ǫ), is positive definite because ‘I’ is usually much

larger than the dimension, 1 + ms, of the Λ-vectors. The ‘I’ index determines the

number of missing moments, ms(I), required.

We can think of −→u as an infinite dimensional missing moment vector, of which only

the first 1+ms(I) components, −→u → (u0, u1, . . . , ums(I)), contribute to the SI quadratic

form. This perspective is important when dealing with the increasing, strictly positive

sequence,

0 < SI(ǫ,−→u ) < SI+1(ǫ,−→u ) < . . . < S∞(ǫ,−→u ),

generated at fixed ǫ and for a fixed, infinite dimensional missing moment vector:
−→u = (u0, u1, . . . , u∞). In this sequence progression, the number of missing moments will

stay fixed at 1+ms, for Ims−1+1 ≤ I ≤ Ims
, after which it will increase by 1 to 2+ms,

etc. Due to this change in dimensionality, the missing moment constraint in Eq.(10),

corresponding to the constrained quadratic form minimization (CQFM) analysis, must

be chosen in some uniform manner, starting at some minimal “I” value. As noted

earlier, for one dimensional problems, the number of missing moments is fixed; whereas

for multidimensional problems, it changes with the order of the OPPQ-BM analysis.We

further elaborate on this CQFM procedure below and in the Appendix.

As noted, all the orthonormal polynomials with index I satisfying I ≤ Ims
as

defined previously, will depend on the first 1 +ms missing moments. Those with index

greater than this, Ims
+1 ≤ I ≤ Ims+1, will depend on the first 2+ms missing moments.

It is at the transition point I = Ims
→ I = Ims

+ 1 that the dimensionality of the

positive definite matrices changes. We make this explicit:

PIms+1(ǫ) = PIms
(ǫ) +

−−−→
Λ(Ims)

ǫ

−−−→
Λ(Ims )

ǫ . (101)

This relation involves two positive definite matrices and one semidefinite (dyadic)

matrix. The dimensions of each satisfy: Dim(PIms+1) = Dim(
−−−→
Λ(Ims )

ǫ

−−−→
Λ(Ims)

ǫ ) and

Dim(PIms+1) = Dim(PIms
) + 1. Due to this, one cannot conclude any relationship

between the eigenvalues of the two positive definite matrices, as was the case for

one dimensional problems (Eq.(9)), where all positive definite P matrices have the

same dimension. Due to this change in dimensionality, the more general CQFM

analysis (i.e. Eq.(10), where the expansion order “n” is replaced by ms), with a

different missing moment vector constraint normalization, is required. That is, the

standard normalization
∑ms

ℓ=0 u
2
ℓ = 1 cannot be applied consistently across all Ums

, for
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ms = 0, 1, . . ., subspaces generated by the missing moments. The Appendix further

elaborates on this.

5.4. Implementation of the Constrained Quadratic Form Minimization

We will be adopting the normalization condition

u0 ≡ 1, (102)

which is expected to be valid (i.e. not interfere with any symmetry conditions) for the

even parity states. Such a normalization is possible from the physics perspective; and

is mathematically valid within our OPPQ framework.

The uniform, linear, normalization, u0 = 1, leads to a constrained quadratic

form SI(ǫ,−→u ) = SI(ǫ, (u0 = 1, u1, . . . , ums
)) whose global minimum value over the

unconstrained missing moment variables (i.e. {uℓ|1 ≤ ℓ ≤ ms}) defines the energy

dependent function, LI(ǫ), introduced in Sec. 2 and further studied in the Appendix.

SI(ǫ,
−→u ) =

ms
∑

ℓ1=0

ms
∑

ℓ2=0

uℓ1PI;ℓ1,ℓ2(ǫ)uℓ2,

SI(ǫ, (1, u1, . . . , ums
)) = PI;0,0(ǫ) + 2

ms
∑

ℓ=1

PI;0,ℓ(ǫ)uℓ +
ms
∑

ℓ1=1

ms
∑

ℓ2=1

uℓ1PI;ℓ1,ℓ2(ǫ)uℓ2,

≡ CI(ǫ) + 2
−→
B I(ǫ) · −→u + 〈−→u |AI(ǫ)|−→u 〉. (103)

The definitions for the CI ,
−→
B I , and AI are self-evident by association.

The global minimum, for fixed ǫ,

LI(ǫ) = Inf−→u {SI(ǫ,−→u )|u0 = 1}, (104)

corresponds to the solution

−→u I;opt(ǫ) = −(AI(ǫ))
−1−→B I(ǫ), (105)

yielding

LI(ǫ) = CI(ǫ)− 〈−→B I(ǫ)|A−1
I (ǫ)|−→B I(ǫ)〉. (106)

Clearly, −→u I;opt(ǫ), a non-unit vector, is the counterpart to the “eigenvector of smallest

eigenvalue” within the one dimensional formulation; whereas LI(ǫ) is the counterpart

to λI(ǫ) within the one dimensional formulation, as well.

As outlined in the Appendix, LI(ǫ) has all the properties associated with λI(E)

in the one dimensional case (i.e. Sec. 4, for the quartic anharmonic oscillator case;

and SI(E) = λI(E) for the harmonic oscillator in Sec. 3). That is, the corresponding

positive, increasing, sequences can be generated, and from this, eigenenergy estimates

and bounds produced, in the exact manner as in the harmonic oscillator and quartic

anharmonic oscillator examples.
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5.5. QZM Numerical Results

Table 4 summarizes the OPPQ-BM results for QZM, including the energy estimates

(column three), ǫ
(min)
Ims

, defined by the local minima relations ∂ǫLIms
(ǫ

(min)
Ims

) = 0; and the

energy bounds (columns four and five), based on a constrained minimization analysis of

the quadratic form given in Eqs.(102 - 106). The ground and first excited states within

the even parity, zero azimuthal angular momentum, symmetry class correspond to ǫgr,1,

respectively. The sixth column is the ǫ0 parameter value used for the reference function

weight, as explained earlier. We emphasize that the bounds are true bounds for the

physical energies. The actual positive sequences, and their convergence behavior, are

not given here due to space limitations, but may be found in Ref.[18].

For comparative purposes, we quote the energy estimates reported by Kravchenko

et al [6], which appear to be the more accurate estimates in the literature, yielding

twelve-thirteen significant figures for the ground state binding energy, ǫgr, for magnetic

field values B ≤ 4000. Their results for the first excited state, ǫ1, vary from twelve

significant figures to six, for magnetic field strengths B ≤ 1000, with no energies reported

for higher magnetic fields. The OPPQ-BM estimates in Table 4 exceed or match their

reported ǫgr values provided B ≤ 200. For B = 2000, the OPPQ-BM results for ǫgr
generate approximately nine of the thirteen significant figures. The only limitation of

OPPQ-BM is the computational speed of our computing platform (i.e. MacBook Pro

2.2 GHz/1333MHz).

For the first excited state, ǫ1, OPPQ-BM matches or surpasses the reported

accuracy of Kravchenko et al’s [6] results for B ≤ O(200). For B = 2000, the OPPQ-BM

results for ǫ1 are compared to those of Schimerczek and Wunner [7]; while for B = 104

we also compare both states to their B-spline analysis results. The ground state results

manifest faster convergence than the first excited state. The generated OPPQ-BM

bounds are modest, at these higher magnetic field strengths, given the higher expansion

orders required for implementing OPPQ-BM. Tighter bounds would be generated on

a faster computer platform, or through an alternate choice to the MER representation

chosen here. These possibilities are currently under investigation.

For large magnetic fields, the expansion order required to obtain results comparable

to those in the literature increases. Results corresponding to Ims
> O(40) requires

considerable time (i.e. several hours), with available computing resources.
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Table 4. OPPQ-BM Estimates and Bounds for QZM: {+, lz = 0}
B ms ∂ǫLIms

(ǫ
(min)
Ims

) = 0 Lower Bound Upper Bound ǫ0

0.02 22 0.509900044089401317gr 0.509900044089401316 0.509900044089401318 0.5

0.509900044089 [6]

22 0.133624177534792893641 0.13362417753479289 0.13362417753479291 0.1

0.133624177534 [6]

0.20 20 0.59038156503476258477gr 0.59038156503476258474 0.59038156503476258480 0.5

0.590381565035 [6]

28 0.148986678198135746961 0.14898667819813574694 0.14898667819813574698 0.1

0.148986678198 [6]

2 20 1.02221390766512912gr 1.02221390766512894 1.02221390766512930 1.0

1.022213907665 [6]

34 0.17394470597281 0.1739447059 0.1739447069 0.1

0.173944705973 [6]

20 24 2.21539851543322gr 2.2153985154326 2.2153985154375 2.0

2.215398515433 [6]

44 0.223842127291 0.223842118 0.223842138 0.2

0.223842127 [6]

200 44 4.72714511068704gr 4.727145110662 4.727145110700 4.0

4.727145110687[6]

50 0.26897721 0.26895 .26920 0.2

0.2689682 [6]

2000 46 9.304765094gr 9.30475796875 9.30476699219 9.0

9.304765082770 [6]

40 0.3131 0.3

48 0.30911
0.30624125 [7]

10000 40 14.140995gr 14.137 14.143 14.0

44 14.1409812

50 14.1409730

14.14096855 [7]

32 0.395331 0.3

40 0.37289

0.3277107 [7]
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6. Conclusion

We have shown that for low dimension Schrodinger equation problems that can be

transformed into a moment equation representation (MER), the Christoffel-Darboux

expansion in terms of the orthonormal polynomials of the weight, can generate

eigenenergy bounds and high accuracy eigenenergy estimates, through a simple algebraic

procedure. We have demonstrated its capabilites through several one and two

dimensional problems, including the important quadratic Zeeman interaction. This

method, OPPQ-BM, can be applied to both bosonic and fermionic systems, and

expands the computational tools available to researchers. Given that there are many

important physical systems admitting MER representations, the approach presented

should be of great interest to many. One might characterize OPPQ-BM as an algebraic

shooting method, applicable to multidimensions, since the BU parameter is empirically

determined. This connotation is acceptable so long as it is understood that unlike

traditional shooting methods, with a “ hit or miss” philosophy, the OPPQ-BM formalism

is a well defined, controlled, procedure for accurately determining bounds on a desired

eigenenergy.
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8. Appendix: Additional Comments and Proofs for the OPPQ-BM

Formalism

All the main elements of the OPPQ-BM formalism have been presented and argued,

except for several. The more important of these is to show that the constrained quadratic

form minimization (CQFM) formalism yields an acceptable alternative to the λI(E)

eigenvalue functions. That is, the expressions LI(E), defined through Eq.(10), and

its multidimensional generalization, as represented by Eqs.(102-106), will have all the

properties of the SI(E) ≡ λI(E) for the harmonic oscillator problem (i.e. Secs. 3),

or equivalently, that of the λI(E) functions for the quartic anharmonic oscillator, as

developed in Sec. 4. Before arguing this, we discuss, briefly why the eigenvalue relation

in Eq.(9) fails for the multidimensional case.

8.1. Unsuitability of λI(E) for Multidimensional OPPQ-BM Implementation

In the mutlidimensional case, the positive definite matrices given in Eq.(101) will have

dimensions that increase with the order of the OPPQ-BM expansion (i.e. the missing

moment order, ms). In such cases, the smallest eigenvalues do not satisfy the desirable

properties of one dimensional systems, as given in Eq.(9), or Eq.(60). Such relations,

combined with the asymptotic properties given in Eq.(69), are central to the eigenenergy

bounding capabilities of OPPQ-BM. By introducing the Constrained Quadratic Form

Minimization (CQFM) formalism represented in Eq.(10) or Eqs. (101-106), we can

enlarge the class of purely energy dependent functions that permit the extension of the

OPPQ-BM philosophy to multidimensions. To further clarify this important point, we

outline the failure of Eq.(9) for multidimensional systems, below.

As in Eq.(101), assumeD1 = D0+S, where all matrices are real and symmetric, D0,1

are positive definite, while S is semidefinite. Assume Dim(D1) = Dim(S) > Dim(D0),

where the last row(s) and column(s) of D0 are zero. The matrix D0 is not a principal

submatrix of D1, hence the eigenvalue interlacing property does not apply.

Let Ê1 denote the smallest eigenvalue eigenvector for D1, with λ0,1 the respective

eigenvalues for the positive matrices. Let
−→E 1;p denote the vector that results from

setting to zero the last component(s) of the corresponding eigenvector; with |−→E 1;p| < 1.

We then have

λ1 ≡ 〈Ê1|D1|Ê1〉 = 〈Ê1|D0|Ê1〉+ 〈Ê1|S|Ê1〉,
= 〈−→E 1;p|D0|−→E 1;p〉+ 〈Ê1|S|Ê1〉,

= |−→E 1;p|2
〈−→E 1;p|D0|−→E 1;p〉

|−→E 1;p|2
+ 〈Ê1|S|Ê1〉,

> |−→E 1;p|2λ0. (107)

Since |−→E 1;p|2 < 1, nothing can be concluded regarding the relative magnitudes of the

eigenvalues. However, we can conclude λ1 ≥ λS, the latter being the eigenvalue of the

S, even if it were positive definite.
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8.2. The Relevance of Constrained Quadratic Form Minimization for OPPQ-BM

Extension to Multidimensions

In order to extend OPPQ-BM to multidimensions we must consider a larger class of

missing moment constraints. Thus, we focus on:

LI(E) ≡ Inf−→µ {SI(E,−→µ )|C(−→µ ) = 1}, (108)

where the constraint is arbitrary. Clearly, for C(−→µ ) = |−→µ |2 = 1, then LI(E) = λI(E).

Instead of the nonlinear unit vector constraint for the missing moment vector, we

can impose other nonlinear, or linear, normalizations which only constrain a subset of

the components of the missing moment vector. For the QZM states of interest (even

parity and Lz = 0), we can simply impose the linear normalization constraint µ0 = 1,

which will not filter out any targeted physical states due to symmetry requirements.

Other normalization conditions are possible (i.e. µ2
0 + µ2

1 = 1, etc.), but not considered

here.

The reason we only want to focus on a finite number of the missing moment vector

components is that although Eq.(61) is valid in multidimensions, as I increases, more

missing moment vector components contribute to the elements of the sequence. For one

dimensional systems, the −→u vector is of fixed dimension; however, for multidimensional

systems, this same sequence relation involves more and more components. Therefore,

constraints must involve the same components across all Ums
subspaces being considered.

This is not possible if we insist on unit normalizations for the missing moment vectors.

If we adopt the normalization µ0 = 1, we then obtain the results in Eqs(102-

106). Our interest is to show that for the adopted normalization, and other possible

normalizations, the two essential components of the OPPQ-BM formalism, identified

below, are preserved. These correspond to the relations given in Eq.(14) and Eq.(11),

in that order. We show these to be true.

8.3. Proof of Eq.(14)

First, we must prove that:

L∞(E) =







finite, ⇐⇒ E = Ephys

∞, ⇐⇒ E 6= Ephys

. (109)

The proof is also by reductio ad absurdum and similar to that used for Eq.(69), for the

quartic anharmonic oscillator example in which LI(E) ≡ λI(E).

Define −→µ σ;C as the optimal solution to the constrained quadratic form minimization

problem at infinite order, for the physical energy:

S∞(Ephys,
−→µ σ;C) ≡ L∞(Ephys) = Inf−→µ {S∞(Ephys,

−→µ )|C(−→µ ) = 1}; (110)

whereas the missing moment vector −→µ phys;C satisfies

S∞(Ephys,
−→µ phys;C) = finite. (111)

33



8.3.1. Reductio Ad Absurdum :

−→µ phys;C 6= −→µ σ:C ⇐⇒ Contradiction. (112)

(Proof) From the infimum property: L∞(Ephys) = S∞(Ephys,−→µ σ;C) ≤
S∞(Ephys,−→µ phys;C) = finite. However, the fact that −→µ σ;C is not a physical vector means

that S∞(Ephys,
−→µ σ;C) = ∞. This leads to a contradiction: ∞ = S∞(Ephys,

−→µ σ;C) ≤
S∞(E,−→µ phys;C) = finite. Thus we must conclude that

−→µ phys;C = −→µ σ, (113)

and Eq.(109) is valid.

8.4. Proof of Eq.(11)

The next requirement is proving that

LI(E) < LI+1(E). (114)

The following analysis uses Ims
and not I. The reason is that “I + 1” represents

the maximum number of orthonormal polynomials generated. If I ≤ Ims
the CDR

projection coefficients will involve all the first 1 + ms missing moments. Thus, if we

take I = Ims
and I = Ims+1, we are working with 1 +ms and 2 +ms missing moments

respectively, and our proof below correctly takes into account the changing dimension

of the associated PIms
positive definite matrices.

The validity of Eq.(114) follows from the fact that in general, the multidimensional

version of the relation SIms
(E,−→µ ) < SIms+1

(E,−→µ ), from Eq.(61), will involve

increasingly more components of the same (infinite dimensional) missing moment

vector. Thus, these relations actually correspond to expressions of the type

SIms
(E, (µ0, µ1, . . . , µms

)) < SIms+1
(E, (µ0, µ1, . . . , µms

, µms+1)) < . . ..

Let −→µ ms
≡ (1,−→u ), where −→u corresponds to all the 1 ≤ ℓ ≤ ms components,

after the C(−→µ ) = u0 = 1 constraint (or any other appropriate constraint) is imposed.

Also −→µ ms;opt(E) refers to the optimal solution for LIms
(E) = SIms

(E,−→µ ms;opt(E)) =

Inf−→µ {SIms
(E,−→µ )|C(−→µ ) = 1}. Note that the energy,E, is arbitrary and fixed. We can

make implicit the E dependence of the optimal missing vector solution, since this is

understood.

We then obtain:

SIms
(E, 1,−→u ms+1;opt) < SIms+1

(E, 1,−→u ms+1;opt) = Lms+1(E).

(115)

This follows from the general relation in Eq.(61) as applied to multidimensional systems.

Furthermore, the expression on the left will only involve the 1 ≤ ℓ ≤ ms components

of the −→u ms+1;opt vector (which is of dimension ms + 1). However, this expression is an

upper bound to the optimal solution generated for LIms
(E,−→µ ), as expressed by:

34



LIms
(E) ≡ SIms

(E, (1,−→u ms;opt)) < SIms
(E, 1,−→u ms+1;opt)

< SIms+1
(E, 1,−→u ms+1;opt) = Lms+1(E).

(116)

This confirms the validity of Eq. (114).

Having established that Eq.(109) and Eq.(114) are valid, then all the properties

exhibited by λI(E), in the one dimensional case (i.e. Sec. 4 on the quartic anharmonic

oscillator) , apply for the multidimensional case, allowing the OPPQ-BM formalism to

generate eigenenergy estimates and eigenenergy bounds.
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