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ABSTRACT
Purpose Raloxifene undergoes extensive glucuronidation in
the gastrointestinal (GI) tract and the liver. However, the im-
pact of age on raloxifene disposition has never been studied.
The purpose of this paper is to determine glucuronidation and
Pharmacokinetics (PK) profiles of raloxifene in rats at different
ages.
Methods Raloxifene glucuronidation was characterized us-
ing S9 fractions prepared from different intestinal segments
and the liver of F344 rats at 4-, 11-, and 28-week. PK studies
were conducted to determine raloxifene oral bioavailability at
different ages. Raloxifene and its glucuronides were quantified
using LC-MS/MS.
Results Raloxifene-6-glucuronide and raloxifene-4′-glucuro-
nide were detected as the major metabolites and the ratio of
these two glucuronides were different ranging from 2.1 to 4.9
folds in the ileum, jejunum, liver, and duodenum, and from
14.5 to 50 folds in the colon. The clearances in the duodenum
at 4-week for both two glucuronides were significantly lower
than those at the other two ages. PK studies showed that the
oral bioavailability of raloxifene is age dependent. The abso-
lute oral bioavailability of raloxifene was 3.5-folds higher at 4-
week compared to that at 11-weeks. When raloxifene was

administered through IV bolus, its half-life was 5.9 ± 1.16 h
and 3.7 ± 0.68 h at 11-and 4-week, respectively.
Conclusion These findings suggested that raloxifene metabo-
lism in the duodenum was significantly slower at young age in
rats, which increased the oral bioavailability of raloxifene. At
11-week, enterohepatic recycling efficiency was higher than
that of 4-week. Raloxifene’s dose at different ages should be
carefully considered.

KEYWORDS Raloxifene . age . glucuronidation . PK

INTRODUCTION

Raloxifene (Fig. 1), a selective estrogen-receptor modulator, is
a mixed agonist and antagonist of estrogen receptor in differ-
ent tissues (1). Several large and long-term clinical trials
showed that raloxifene increased bone mineral density and
reduced the risk of fracture in postmenopausal women (2–4).
Raloxifene was approved for the treatment and prevention of
osteoporosis in postmenopausal women using Evista as the
brand name. Other than the approved indication, raloxifene
was also found to be associated with reduced breast cancer in
postmenopausal women (5). In addition, raloxifene has been
continuously tested at different ages for the treatment of dif-
ferent types of diseases, such as middle-aged (18–50 years)
patients with schizophrenia (6), middle to old-age (40–
70 years) patients with refractory schizophrenia (7), and mid-
dle to old-age (55–86 years) patients with Castration-Resistant
Prostate Cancer (8). Raloxifene was also tested in pediatric
patients for the management of persistent pubertal gyneco-
mastia (mean age 14.6 years) (9).

Raloxifene disposition has been well studied in adults or
using adult animals. After being taken orally, approximately
60% of raloxifene is rapidly absorbed in the gastrointestinal
tract. However, the absolute oral bioavailability of raloxifene
in human is only 2% (10) due to rapid metabolism in the
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gastrointestinal (GI) tract and the liver. The major metabolites
of raloxifene are raloxifene-6-glucuronide (Ral-6-G) and
raloxifene-4′-glucuronide (Ral-4′-G) (Fig. 1) mediated by dif-
ferent isoforms of glucuronosyltransferase (UGT/Ugt) includ-
ing UGT1A1, 1A6, 1A8 and 1A10. Due to expression
variations of these UGT isoforms, the production of these
two major metabolites in the GI tract and the liver could be
different. For example, we found previously that Ral-4′-G is
the major metabolite in the intestine while both metabolites
are produced in the liver when incubated with human tissue
microsomes (11). In addition, raloxifene may undergo enter-
ohepatic recycling through glucuronidation and de-glucuro-
nidation, which enhances the impact of glucuronidation in the
GI tract and the liver on systemic exposure of raloxifene.

Currently, the doses used in most of the clinical trials re-
gardless the age were 60 mg/day, which was suggested to be
used in postmenopausal women. However, raloxifene dispo-
sition could be age-dependent because expression of the in-
volved metabolic enzymes (i.e., UGTs) is age-dependent.
Disposition variation could cause different drug exposure in
the plasma at different ages. The aim of the present study was
to determine the impact of age on raloxifene glucuronidation
and in vivo exposure using F344 rats.

MATERIALS AND METHODS

Chemicals and Reagents

Raloxifene hydrochloride (Ral), raloxifene-6-O-glucuronide
(Ral-6-G), and raloxifene-4′-O-glucuronide (Ral-4′-G) were
purchased from Toronto Research Chemicals (Toronto,
Canada , a l l compounds pur i t y ≥99%) . MgCl2 ,

saccharolactone, alamethicin, formononetin, and UDPGA
were purchased from Sigma-Aldrich (St. Louis, MO), water,
methanol, and acetonitrile are LC-MS grade and purchased
from EMD (Gibbstown, NJ, USA). The primary polyclonal
antibodies against Ugt1a and β-actin was purchased from
(Cell Signaling Technology, Inc., MA). The polyvinylidene
fluoride membranes were obtained from Millipore
Corporation (MA, USA).

Animals

Female F344 rats were obtained from Harlan Laboratory
(Indianapolis, IN), and housed in the animal facility at the
University of Houston within an environmentally controlled
room (temperature, 23–27°C, humidity, 45–55%, and 12 h
dark-light cycle) with free access of water and a standard diet.
The animal study was approved by the IACUC at the
University of Houston.

Tissue Enzyme S9 Preparation

The liver and intestine S9 fractions were prepared from F344
rats aged 4, 11, and 28 weeks according to the protocol pub-
lished by us previously (12, 13). Briefly, rats (n= 6) at 4 (80 ±
10 g), 11 (150 ± 10 g), or 28 (250 ± 10 g) weeks were fasted
overnight and sacrificed to collect the liver and intestine tis-
sues. The fresh tissues were flushed with cold buffer to remove
the blood and luminal content, and then humorized followed
by centrifugation at 9000×g for 15 mins at 4°C to afford S9
fractions. The protein concentrations were measured
using the Pierce™ BCA Protein Assay Kit (Thermos
Scientific, USA).
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Glucuronidation Reaction

The glucuronidation reaction was carried out using a stan-
dard protocol described in our previous publication (14).
Briefly, tissue S9 fractions, MgCl2 (5 mM), saccharolactone
(4.4 mM), alamethicin (0.022 mg/ml), and UDPGA
(3.5 mM) were mixed in a 50 mM potassium phosphate buffer
(pH 79.4, total volume 170 μL). Then raloxifene (Final con-
centration 0.125, 0.25, 0.5, 1, 2.5, 5, 10, 12.5, 25 μM) was
incubated in the above mixture for 60 min at 37°C. The
reaction was then terminated by adding 100 μL acetonitrile
solution containing 0.6% formic acid and 100 nM formono-
netin as the internal standard (I.S.). Samples were then vor-
texed and centrifuged at 15,000 rpm for 15 min at 4°C for
injection. A raloxifene control in phosphate buffer incubated
with a boiled S9 fraction was used as the negative control.

Western Blotting

To investigate the age-related difference in glucuronidation
act iv i ty , Ugt content in duodenum and liver S9
fractions samples from 4-, 11-, and 28-week rats were mea-
sured usingWestern blot. Aliquots of S9 fraction samples were
separated on a 10% SDS-PAGE gel using electrophoresis in a
running buffer. Then, the gels were transferred to a polyviny-
lidene fluoride membranes and the membrane was blocked in
5% FBS in Tris-buffered saline Tween 20 overnight, followed
by incubation with Ugt1a primary antibody at 4°C overnight
in a Tris-buffered saline Tween 20 buffer at 1:1000 dilution
(Cell Signaling Technology, Inc., MA). After incubation with
primary antibodies, the membrane was allowed to return to
room temperature, rinsed with Tris-buffered saline Tween 20
3 times, and the band visualization was achieved by incubat-
ing with appropriate horseradish peroxidase-conjugated sec-
ondary antibody and chemiluminescence agents .
Densitometry analysis was conducted using a ChemiDoc
MP Imaging System from Bio-Rad laboratories.

Pharmacokinetic Study

For oral administration, raloxifene (4 mg/ml) was dissolved in
ethanol:PEG400:0.1% cellulose (1:2:7) and administered
(10 mg/kg) to rats at 4-week and 11-week (n= 5 or 6) through
oral gavage as reported previously (15). For i.v. injection,
raloxifene was administered to rats at 2 mg/kg through tail
vein. Blood samples (approximately 30–50 μl) were collected
by snipping the tails at 0, 0.25, 0.5, 1, 2, 4, 6, and 24 h. Plasma
was afforded after centrifugation (8000 rpm, 3 min) and kept
at −80°C freezer until analysis. Samples were prepared using
the protocol published by us previously (12). Total raloxifene,
Ral-6-G, and Ral-4′-G were analyzed using the published
method.

Data Calculation and Statistical Analysis

Data were presented as mean ± standard deviation.
Metabolic rates were calculated using raloxifene glucuronide
concentration divided by enzyme concentration and incuba-
tion time. Michaelis-Menten, Lineweaver-Burk, and Eadie-
Hofstee plots kinetic models were selected by comparison of
Akaike information criterion values, lower Akaike values indi-
cating a better-fit model will be chosen. Kinetic parameters
Km, Vmax, and intrinsic clearance (Clearance) values were
obtained via nonlinear regression analysis of the Michaelis-
Menten equation. Two-way ANOVA was used to test the
effect of age and the intestinal segment on raloxifene glucur-
onidation. The raloxifene pharmacokinetic data were ana-
lyzed usingWinNonlin 6.3 with the non-compartmental mod-
el. Un-paired Student’s t-test (Microsoft Excel) was used to
analyze the PK parameters at different ages.

RESULTS

When raloxifene was incubated with the enzymes from differ-
ent regions, Ral-6-G and Ral-4′-G were detected as the
metabolites (Fig. 1). These two glucuronides were then quan-
tified using a validated LC-MS method published by us pre-
viously (12). The kinetics parameters for both Ral-6-G and
Ral-4′-G were more accurately modeled by Michaelis-
Menten in all intestinal segments and liver S9 fractions rather
than by Lineweaver-Burk and Eadie-Hofstee plots kinetics.

Glucuronidation Pattern at Different Ages

The glucuronidation pattern was evaluated by incubating
raloxifene at 5 μMwith different intestinal segments and liver
S9 fractions. The results showed that Ral-6-G is the major
metabolites for all regions at all ages (Fig. 2). Additionally,
significant age- and segment-related differences in Ral-6-G
and Ral-4′-G metabolic rates were observed. In the colon,
the differences of these twometabolites were 46.7 and 50 folds
at 4 and 11 weeks, while at 28 weeks, the difference is 14.5
folds. In the duodenum, the glucuronidation pattern is similar
to that in the colon. At 4- and 11- week, the metabolic rates of
Ral-6-G were 4.9 folds of that Ral-4′-G, while at 28-week, the
ratio of these twometabolites was decreased to 3.5-fold. In the
liver, the ratio of these two metabolites were similar at all ages.
The ratios of these two metabolites in the other intestinal seg-
ments were slightly different.

Glucuronidation Kinetics

The total metabolic rates were calculated using the sum con-
centrations of Ral-6-G and Ral-4′-G and the kinetic parame-
ters were listed in Table I. The results showed that in the
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duodenum, the total metabolic rate increased from 4-week to
11- and 28-week (Fig. 3A; Table I). The Vmax was increased
5.9-fold from 20.09 ± 1.06 pmol/mg/min at 4-week to
118.50 ± 5.34 and 121.50 ± 7.53 pmol/mg/min at 11- and
28-week, respectively. Similarly, the Km value was also in-
creased approximately 2-fold from 4-week to 11- and 28-
week (Table I) and the Clearance was increased about 2.9
and 3.5-fold from 4-week to 11- and 28-week, respectively.
When compared 28-week with 11-week, the Vmax, Km,
and Clearance did not change significantly.

In the other intestinal segments, the Vmax, Km, and
Clearance are various slightly (Fig. 3 B, C D, Table I) at
different ages. For the liver, both Vmax and Km are similar
at 4-week and 11-week but increased significantly when com-
pared to those at 28-week. However, the liver clearance only
slightly decreased from 4-week to 11- and 28-week (Table I).

To fully evaluate the glucuronidation pattern, the Vmax,
Km, and Clearance of Ral-6-G and Ral-4′-G were calculated
using the data when raloxifene was incubated with S9 frac-
tions from different regions. The results showed that both Ral-
6-G and Ral-4′-G metabolic rates were age-dependent in the
duodenum (Figs. 4 and 5, and Table II). The Vmax and Km
of these two metabolites at 4-weeks rats were significantly

lower than those at 11- and 28-weeks parameters. The Km
and Vmax of the Ral-6-G was age-dependent increased from
1.224 ± 0.330 μM to 2.033 ± 0.389 and 1.805 ± 0.529,
16.71 ± 0.97 pmol/mg/min to 94.18 ± 4.41 and 89.96 ±
6.29 pmol/mg/min in duodenum, respectively. The Km
and Vmax of the Ral-4-G were 2.1 ~ 4.9-fold lower than
Km and Vmax of the Ral-6-G, but they were also age-
dependent increased in the duodenum. Consistent with the
Km and Vmax results, the Clearance for Ral-6-G and Ral-
4′-G was significantly lower at 4-week when compared to
those at 11- and 28-week in the duodenum. In the jejunum
and ileum regions, the Vmax and Km of Ral-6-G and Ral-4′-
G were slightly changed at different ages, but clearance in
jejunum and ileum are higher at 4-week than those at 11-
and 28-week.

Ugt1 Expression in the Duodenum and the Liver

Upon observing age-related increases in duodenum glu-
curonidation activity, we further examined UGT protein
expression in the duodenum S9 fraction samples at dif-
ferent ages using Western blot. The results showed that
the Ugt1a expression in the duodenum at 11- and 28-

Duo

4 week 11 week 28 week
0

1

2

3

4

Ral-6-G
Ral-4'-G

4.9-fold

4.9-fold
3.5-fold

setar
msilobate

M
)g

m/ni
m/lo

mn(
Jej

4 week 11 week 28 week
0

1

2

3

4 2.3-fold
1.7-fold 2.0-fold

M
et

ab
ol

is
m

 ra
te

s
(n

m
ol

/m
in

/m
g)

Ile

4 week 11 week 28 week
0.0

0.5

1.0

1.5

2.0

2.5 3.4-fold

2.1-fold 2.7-fold

M
et

ab
ol

is
m

 ra
te

s
(n

m
ol

/m
in

/m
g)

Colon

4 week 11 week 28 week
0.0

0.5

1.0

1.5 46.7-fold
50.1-fold

14.5-fold

M
et

ab
ol

is
m

 ra
te

s
(n

m
ol

/m
in

/m
g)

Liver

4 week 11 week 28 week
0

2

4

6
3.3-fold 3.6-fold

3.5-fold

M
et

ab
ol

is
m

 ra
te

s
(n

m
ol

/m
in

/m
g)

Fig. 2 Raloxifene glucuronidation pattern at different ages in different intestinal segments and liver (n=3).

Table I Kinetic parameters of total
raloxifene glucuronide (Ral-6-G+
Ral-4′-G) in different regions at dif-
ferent ages

Kinetics parameters Regions Ages(weeks)

4w 11w 28w

Km(μM) Duodenum 1.20 ± 0.27 2.44 ± 0.40* 2.048±0.48*

Jejunum 1.41 ± 0.17 2.045 ± 0.32* 2.211±0.21*

Ileum 1.43 ± 0.19 2.153 ± 0.30* 1.645±0.38

Colon 1.43 ± 0.16 0.658 ± 0.08* 0.906±0.10*

liver 3.18 ± 0.19 3.514 ± 0.39 7.145±0.66*#

Vmax(pmol/mg/min) Duodenum 20.09 ± 1.06 118.5 ± 5.34* 121.50±7.53*

Jejunum 100.20 ± 5.93 89.17 ± 5.97 98.22±5.02

Ileum 71.31 ± 4.55 57.31 ± 4.24* 62.68±3.66*

Colon 25.95 ± 1.44 25.23 ± 2.28 19.54±0.85*#

liver 178.40 ± 3.13 183.1 ± 8.39 305.5±11.25*#

Clearance Duodenum 16.69 ± 1.75 48.58 ± 4.38* 59.28±7.35*

Jejunum 71.27 ± 4.17 43.61 ± 5.84* 44.43±4.54*

Ileum 50.04 ± 6.38 26.62 ± 3.94* 38.11±4.45*#

Colon 18.10 ± 2.01 36.78 ± 3.74* 21.57±1.88#

liver 56.13 ± 1.98 52.1 ± 4.77 42.75±3.15*

*, p <0.05 compared with 4 weeks; #, p <0.05, compared with 28 weeks (t-test)
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week was 3.7 and 2.8 folds higher than that of 4-week
(Fig. 7). In the liver, the expression of Ugt1a was similar
at all the three ages.

Pharmacokinetics of Raloxifene at Different Ages
in Rats

Because the total clearance at 11-week is similar to that at 28-
week, we compared the PK profile using female F344 rats at

4- and 11-week (Fig. 6). Total raloxifene, Ral-6-G, and Ral-4′-
G were quantified in the plasma using the robust LC-MS
method published by us previously (12). The results showed
when raloxifene was administered through oral route, the
plasma AUC0-t of raloxifene at 4-weeks (4456.78 ±
1328.32 nmol h/L) was about 3.6-fold higher than that at
11-week (1254.57 ± 296.07 nmol h/L, Fig. 6A, Table IV).
The absolute oral bioavailability (F%) of raloxifene was signif-
icantly higher at 4-week (75.4%) compared to that at 11-week

Fig. 3 Regional Glucuronidation and clearance of Raloxifene metabolism in rat S9 fraction. The glucuronidation reaction was carried out for 60min at 37°C with
0.125, 0.25, 0.5, 1, 2.5, 5, 10, 12.5, 25 μM raloxifene. The S9 fractions were made from duodenum (Duo), Jejunum (Jej), ileum(Ile), colon and liver used in the
study, the metabolic clearance of raloxifene to metabolite by each enzyme is given as the Vmax/Km ratio. Each column represents the mean and error bars
indicate the S.D (n=3).

Fig. 4 Regional Glucuronidation and clearance of raloxifene−6-glucuronide in rat S9 fraction. The glucuronidation reaction was carried out for 60 min at 37°C
with 0.125, 0.25, 0.5, 1, 2.5, 5, 10, 12.5, 25 μM raloxifene. The S9 enzyme fraction of rat were made from duodenum (Duo), Jejunum (Jej), ileum (Ile), colon
and liver used in the study, the metabolic clearance of raloxifene to metabolite by each enzyme is given as the Vmax/Km ratio. Each column represents the mean
and error bars indicate the S.D (n=3).

1361Pharm Res (2021) 38:1357–1367



(19.3%). The plasma ratios of Ral-6-G vs Ral-4′-G were 1.68
and 0.04 at 4-week and 3.93 and 0.44 at 11-week, respectively
(Table IV), suggesting that metabolic rates at 4-weeks were
slower than those at 11-week. When raloxifene was adminis-
tered through IV route, the terminal half-life of raloxifene was
significantly longer at 11-week (5.98 ± 1.16 h) compared to
that at 4-week (3.76 ± 0.69 h), while half-lives of Ral-6-G
and Ral-4′-G were similar at these two ages (Fig. 6B,
Table III).

Estimation of In Vivo Glucuronidation

The in vivo glucuronidation capability was estimated us-
ing the ratio of Ral-6-G/Ral and Ral-4′-G/Ral. The results
showed that the ratios of Ral-6-G/Ral were 1.68 and
3.93 at 4-week and 11-week, respectively, and the ra-
tios of Ral-4′-G/Ral were 0.04 and 0.44 at 4-week and
11-week, respectively (Table IV). The in vivo glucuroni-
dation estimation indicated that in vivo glucuronide ex-
posure at 4-week is significantly lower than those at 11-
week, which is consistent with the results observed in
in vitro metabolism studies.

DISCUSSION

Raloxifene undergoes extensive glucuronidation in the GI
tract and the liver to afford two metabolites Ral-6-G and
Ral-4′-G (Fig. 1), where Ral-6-G is the major metabolite com-
pared to Ral-4′-G (Fig. 2). We determined raloxifene glucur-
onidation in different regions using S9 fractions prepared

from rats at different ages. The results showed that in the
duodenum, the metabolic rates for both Ral-6-G and Ral-
4′-G were significantly lower at 4-week compared to that of
11-and 28-weeks (Fig. 3, 4, 5). The total clearance (Ral-6-G
and Ral-4′-G) was gradually decreased in the GI tract from
duodenum, jejunum, ileum, and colon at all three ages other
than 4-week of the duodenum (Fig. 3F). The clearance for
each metabolite in the GI tract and the liver was age and
region dependent (Fig. 4F, 5F). The Km values in different
regions at different ages were fluctuant (Table I and II). PK
studies showed that the oral bioavailability of raloxifene was
significantly higher at 4 weeks when compared to that at 11
weeks (Table IV, Fig. 6). In addition, raloxifene half-life was
significantly longer at 11 weeks when compared to that at 4
weeks (Table III, Fig. 6).

Age is known to affect intestinal function (16) and age-
dependent glucuronidation in the GI tract and the liver have
been reported in rodents and humans (17, 18). Raloxifene is
administered through oral route and undergoes glucuronida-
tion, resulting in low oral bioavailability. Inmost of the clinical
trials, regardless of what age, raloxifene’s dose (i.e., 60 mg/
day) was same as that in postmenopausal women. However, it
is not clear whether raloxifene’s disposition and in vivo expo-
sure are age dependent. In this study, we determined ralox-
ifene’s metabolism and PK profiles at different ages in F344
rats to address these concerns. It was reported that rats are
sexually mature at 6 weeks and socially mature at around 5–
6 months (20–25 weeks) (19, 20). Therefore, we conducted the
experiments using F344 rats at the age before sexually mature
(i.e., 4 weeks old), after sexually but before socially mature (i.e.,
11 weeks old), and after socially mature (i.e., 28 weeks old) and

Fig. 5 Regional Glucuronidation and clearance of raloxifene−4′-glucuronide in rat S9 fraction. The glucuronidation reaction was carried out for 60 min at 37°C
with 0.125, 0.25, 0.5, 1, 2.5, 5, 10, 12.5, 25 μM raloxifene. The S9 enzyme fraction of rat were made from duodenum (Duo), Jejunum (Jej), ileum (Ile), colon
and liver used in the study, the metabolic clearance of raloxifene to metabolite by each enzyme is given as the Vmax/Km ratio. Each column represents the mean
and error bars indicate the S.D (n=3).
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expect to determine the impact of both body and social status
on the disposition and oral bioavailability of raloxifene. A
10 mg/kg dose (human equivalent dose, 96 mg/kg) was used
in the oral PK studies, which is slightly (1.6-fold) higher than
that in human to ensure the measurement of Ral-4′-G in the
plasma.

We determined the impact of age on raloxifene oral bio-
availability, which has never been reported previously, using
rats at 4- and 11-week since the total raloxifene glucuronida-
tion clearance at 11-week is similar as that at 28-week. The
results showed that the absolute bioavailability (F%) of

raloxifene at 4-week (75.4%) was significantly higher than that
at 11-week (19.3%, Table IV, Fig. 6A). It was reported that
raloxifene PK could be affected by intestinal glucuronidation
(21), however, the impact of different intestinal segments on
raloxifene oral bioavailability is unknown. Usually, the jeju-
num and ileum are believed to be the major drug disposition
segments and the duodenum is treated as a breaking throw
organ. For raloxifene, we found that duodenum and colon
metabolic clearances were significantly lower at 4-week
than that at 11-week (Table I). Since colon is the last part of
the GI tract and the chance for raloxifene to be absorbed in
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Fig. 6 Plasma concentration versus time profiles of raloxifene and its glucuronides after oral administration (A) and intravenous administration (B) at 4- and 11-
week (n=5). Green line, 4 weeks; Blue line, 11 weeks. Raloxifene administered at 10 mg/kg by oral or 2 mg/kg by intravenous to Fisher 344 rats. Each symbol
represents the mean and the error bars indicate the S.D.

Table III Pharmacokinetic parameters of raloxifene after intravenous to Fisher 344 female rats (n=5, parameters represent mean± SD)

Parameters Raloxifene Raloxifene-6-glu Raloxifene-4′-glu

4 weeks 11 weeks 4 weeks 11 weeks 4 weeks 11 weeks

T1/2(h) 3.76 ± 0.69 5.98 ± 1.16* 4.08 ± 2.02 8.86 ± 2.50* 0.70 ± 0.20 0.72 ± 0.16

Tmax(h) 0.33 ± 0.12 0.25 ± 0.0 0.33 ± 0.12 0.40 ± 0.30 0.33 ± 0.12 0.25 ± 0.0

Cmax(nmol/L) 676.0 ± 421.7 772.2 ± 360.69 362.0 ± 22.2 231.0 ± 7.67 43.17 ± 7.31 18.62 ± 1.60*

AUC0~t(nmol h/L) 1182.23 ± 746.89 1298.23 ± 462.28 774.4 ± 203.8 766.29 ± 115.28 47.06 ± 5.09 21.58 ± 2.55*

AUC0~∞(nmol h/L) 1182.23 ± 746.90 1298.23 ± 462.29 774.4 ± 203.9 766.29 ± 115.29 47.06 ± 5.10 21.58 ± 2.56*

Vz(L/kg) 27.72 ± 13.74 27.9 ± 6.12 29.2 ± 12.82 61.2 ± 10.34* 89.28 ± 24.03 198.04 ± 33.73*

CL(L/h/kg) 4.92 ± 2.20 3.4 ± 1.19 5.56 ± 1.38 5.02 ± 0.98 89.63 ± 10.86 193.75 ± 26.65*

MRT(h) 2.74 ± 0.32 3.68 ± 1.57 3.37 ± 1.52 5.89 ± 0.93 0.90 ± 0.28 0.91 ± 0.16

*, p <0.05 compared with 4 weeks (unpaired t-test)
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the colon is low it is plausible that significant amount of drug
was absorbed in the duodenum, resulting in different in vivo
exposure. This is an interesting evidence showing that duode-
num disposition could dominate drug oral bioavailability. The
in vivometabolism estimation (Table IV) confirmed that lower
metabolic rate at 4-week is associated with high raloxifene oral
bioavailability at 4-week. Age-dependent oral bioavailability
suggests that raloxifene dose should be carefully considered
when administered at different ages in clinical trials.

Another interesting finding in PK studies is age-dependent
enterohepatic recycling (EHR). In the PK study, double ab-
sorption peaks and long terminal half-life in the oral PK pro-
files (Fig. 6), which are two typical characters of EHR (22),
clearly demonstrated the existence of EHR. In addition, at
least Ral-6-G is a good substrate of MRP2 efflux transporter
(23), which is a key factor to facilitate EHR mediated by glu-
curonidation pathway (24). When compared EHR at 4- and
11-week, we found that the raloxifene half-life was significant-
ly shorter at 4-week, suggesting that the efficiency of EHR at
4-week is lower. The possible reasons for low recycling effi-
ciency at 4-week could be age-dependent efflux transporter
(e.g., MRP2) expression and age-dependent intestinal micro-
biota, which hydrolyzes raloxifene glucuronide to facilitate
raloxifene’s recycling via the glucuronidation pathway (25,
26).

In vitrometabolism study showed that the total raloxifene
glucuronidation is age-dependent but is only significant in
the duodenum (Fig. 3). Before sexually mature (i.e., 4-week),
the total glucuronidation rate is significantly lower than
those at the elder ages (i.e., 11-, 28-week). The intrinsic
clearance was gradually decreased from the duodenum to
the colon in the GI tract other than 4-week (Fig. 3F), sug-
gesting after sexually mature, the upper part is the major
disposition segments in the GI tract. For Ral-6-G and Ral-
4′-G, the metabolic rates follow the same tendency (Figs. 4

and 5). For Ral-6-G, the clearance of the duodenum and
colon is lower than those of jejunum, ileum, and liver at 4-
week (Fig. 4F). Interestingly, when clearance of duodenum
and colon increased at 11-week (green and purple lines), the
clearance of jejunum, ileum, and liver (brown, blue, and red
lines) decreased, suggesting that these regions may have
complementary effect. From 11-week to 28-week, the clear-
ance of the duodenum is static, while the clearance of jeju-
num, ileum, and liver was also static without decreasing.
The clearance of the colon was decreased from 11- to 28-
week somehow. For Ral-4′-G, clearance of duodenum and
colon gradually increased at different ages and a similar
complementary tendency was in the other three regions
was observed (Fig. 5F). In term of Km, all the segments were
smaller at 4-week other than the colon (Table I). These
findings suggested that UGTs in the duodenum does not
achieve mature status before sexually mature in F344 rats.

The semi-quantification analysis by Western blot showed
that the expression of Ugt1a in the duodenum was significant-
ly lower at 4-week when compared those at 11- and 28-week
(Fig. 7). Lower Ugt1a expression at 4-week in the duodenum,
which is consistent with those reported earlier (17), is the ma-
jor reason why glucuronidation at 4-week is significantly lower
than those at 11- and 28-week in duodenum (Figs. 3, 4, 5). In
the liver, where glucuronidation rates were similar at different
ages, the Ugt1a expression levels were similar (Fig. 7) at 4-,
11-, and 28-week.

The results also showed that Ral-6-G is the major metab-
olites for all regions at all ages when compared to Ral-4′-G
(Fig. 2). In the duodenum and colon, the ratios of these two
metabolites are different at age of 28-week with the other two
younger ages, suggesting that the relevant UGT isoforms me-
diated these two metabolites challenged at older age. In the
liver, the ratios of these two metabolites is stable, revealing
that the composition of the relevant UGT isoforms are stable

Table IV Pharmacokinetic parameters of raloxifene after oral administration to Fisher 344 female rats (n= 5, parameters represent mean± SD, F was
calculated by dividing the oral AUCs by the intravenous AUCs corrected by doses)

Parameters Raloxifene Raloxifene-6-glu Raloxifene-4′-glu

4 weeks 11 weeks 4 weeks 11 weeks 4 weeks p.o. 11 weeks

T1/2(h) 10.67±3.44 54.76±29.35* 15.53±4.15 11.11±2.98 18.56±6.64 16.97±5.64

Tmax(h) 1.67±0.47 2.67±1.15 0.25±0.0 3.5±1.91 2.5±0.87 3.6±1.67

Cmax(nmol/L) 617.75±189.59 74.13±28.14* 2100.75±982.9 491.25±158.92* 23.34±13.61 51.86±32.85

AUC0~t(nmol h/L) 4456.78±1328.32 1254.57±296.0*7 7531.83±2105.29 4926.03±2006.77 186.73±61.54 554.36±340.19

AUC0~∞(nmol h/L) 13,370.35±3984.95 4474.85±1214.26* 9264.15±2589.51 6069.23±2119.21 250.22±82.46 765.63±381.83*

Vz(L/kg) 12.61±4.60 363.87±42.15* 8.3±1.89 60.48±26.11* 376.25±166.83 876.03±640.53

CL(L/h/kg) 0.83±0.26 5.21±2.26* 0.40±0.13 3.75±1.01* 14.02±2.87 33.32±14.77*

MRT(h) 7.83±1.44 11.14±0.93* 8.14±1.58 8.72±0.69 18.56±6.64 9.4±0.76*

F(%) 75.4% 19.3%

In vivo glucuronidation 1.68 3.93 0.04 0.44

*, p <0.05 compared with 4 weeks (t-test)
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at different ages. In humans, Ral-6-G is mainly produced by
UGT1A1 and 1A9, while Ral-4′-G is mainly produced by
UGT1A8 and 1A10. Raloxifene metabolism with rat super-
somes has never been studied, probably because of lack of rat
UGT supersomes.

Other than glucuronidation, sulfonation by SULTs and
oxidation by CYPs were also reported as metabolic pathways
for raloxifene (27, 28). In addition, the expression of SULTs
and CYPs are also age dependent (29). For example, it was
reported that the mRNA level of SULTs in the liver in rats
was increased with age after born and reached to plateau after
4 weeks (30) and the mRNA levels of the majority of CYP
isoforms in the rat liver were increased with age after born
and then either maintained the expression or decreased with
age from adulthood (29). Therefore, sulfonation and oxida-
tion of raloxifene may also be age dependent. However, the
impact of sulfonation and oxidation on raloxifene in vivo expo-
sure is minor. In a previous PK study, we found that the
systemic exposure of raloxifene-sulfate was significantly lower
(10–180 folds) than those of glucuronides in F344 rats (12).
Studies from other research groups revealed that raloxifene
oxidative metabolites are almost non-detectable in in vivo stud-
ies (31). Therefore, we didn’t determine the impact sulfona-
tion and oxidation on raloxifene’s in vivo exposure at different
ages in this study.

CONCLUSION

Raloxifene glucuronidation is age dependent in the duode-
num in rats probably due to unmatured UGT development

in this region at young age, which could significantly increase
in vivo raloxifene exposure. In addition, raloxifene enterohe-
patic recycling efficiency could be lower at young age resulting
in different terminal half-life in vivo. These finding suggest that
raloxifene dose should be carefully considered in clinical stud-
ies when it is used at different ages.
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